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Abstract 
 

  How does the establishment of new university educational programs promote 

university-industry joint research?  To study this question for the fields of life 

sciences and biotechnology, we first compile the data on the establishment of new 

undergraduate and graduate programs in these fields in Japanese universities since 

the 1950s.  We then analyze statistically whether and how such establishment 

contributed to the occurrence and frequency of university-industry joint research in 

biotechnology.  The results suggest that, first, the expansion of such university 

programs in fact contributed to the promotion of university-industry joint research 

and, second, these collaborations increased following the 1998 legislation to promote 

technology transfer from universities (the so-called TLO Act) and the 1999 

legislation to allow universities to retain rights on their inventions made with 

government research funds (the so-called Japanese Bayh-Dole Act). 
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1. Introduction 

 

The role of universities in the advancement of new industries is now widely 

recognized.  Historically, universities contributed to industrial innovation not only 

by supplying educated scientists and engineers but also by advising industries, 

helping them to learn new technologies, and performing joint research with them: see 

Rosenberg and Nelson (1994) and Mowery et al. (2004) for the US; Murmann (2003) 

for Germany; and Odagiri and Goto (1996) and Odagiri (1999) for Japan.  This 

trend has accelerated in recent years and, now, university-industry collaborations 

(hereafter UI collaborations) are actively pursued in every developed country in a 

variety of ways both formally through UI research contracts, university licensing, 

and other contracts, and less formally through consulting and miscellaneous informal 

UI interaction.  Many survey studies testify to this fact.  In the US, when asked 

about the importance to industrial R&D of various information sources related to 

public research, 36 percent of the respondents replied that “informal interaction” is at 

least modestly important, 32 percent replied the same for “consulting”, and 21 

percent for “contract research” (Cohen et al., 2002).  This result suggests that many 

firms are benefitting from UI collaborations, in addition to open-source academic 

research such as publications and reports, for which 41 percent of the respondents 

replied similarly.  In Japan, 24 percent of large-scale companies (with 250 

employees or more) with innovative activities replied that they cooperated with 

universities for innovations and 56 percent of them replied that universities are 

highly or moderately important partners for cooperation (Ijichi and Odagiri, 2006).  

In Europe, similar evidences are given in community innovation surveys (CIS); for 

instance, in Belgium, 27 percent of firms that innovated had a cooperative agreement 

with universities (Veugelers and Cassiman, 2005). 

 

Nowhere is such UI collaboration more important than in the field of biotechnology 

and health care, most notably pharmaceuticals.  In the same US survey, more than a 

half, namely 53 percent, of pharmaceutical firms replied that contract research is 

important, far exceeding the percentage for all industries (21 percent).  In Japan, 70 

percent of firms in the pharmaceutical industry replied that they had cooperated with 

universities for innovation, again far exceeding the figure for all industries (24 
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percent).  This closeness of university research and industrial application in 

pharmaceuticals owes mainly to two factors.  The first is the intrinsic nature of the 

industry.  From the beginning of the modern drug industry and the chemical 

industry in the latter half of nineteenth century in Germany, the most advanced 

country at the time, the interaction between universities and industries played 

significant roles (Murmann, 2003).  Today, ‘science linkage’ as measured by the 

frequency of citation to scientific papers in patent applications is known to be 

particularly prominent in the biotechnology and pharmaceutical fields (McMillan et 

al., 2000). 

 

The second factor for the importance of UI collaboration in biotechnology is the 

rapid progress of related basic sciences, mainly life sciences.  As exemplified by the 

discovery of DNA double helix structure by J. D. Watson and F. H. C. Crick in 1953, 

the invention of genetic engineering technique by S. Cohen and J. Boyer in 1973, and 

the completion of the International Human Genome Project in 2003, the latter half of 

the twentieth century saw a historically unprecedented speed of development in life 

sciences, which could be applied to industrial innovation.  The consequence was 

that the businesses had to follow scientific development closely so as not to be left 

behind competitors.  University researchers also needed close collaboration with 

industries to prove industrial applicability of their research results. 

 

The close UI relationships and active collaborative activities common in 

biotechnology-related industries, such as pharmaceuticals and agriculture, have been 

documented and studied by many (e.g., Henderson et al., 1999, Pisano, 2002, 

McKelvey et al., 2004, and the papers in McKelvey and Orsenigo, 2006).  That the 

extent and manner of UI collaborations are dependent on the national innovation 

system characterized by the legal system, the business system, the labor system, the 

university and other educational systems, government policies, and such has been 

also noted: see Nelson (1993) for an international comparison of national innovation 

systems and Kneller (2007) for a Japan-US comparison in relation to biotechnology 

and pharmaceuticals. 

 

Another important fact is that, even though scientific community has become global 
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in the sense that published research results can be accessed worldwide virtually 

without delay, geographical proximity still plays an important role in UI 

collaborations.  Owen-Smith and Powell (2004) studied the biotechnology 

knowledge network of the Boston area and found that ties with local research 

community increase biotech firms’ patents.  Zucker et al. (1998) found a positive 

influence of the presence of star researchers and top-quality universities in the region 

on the birth of biotech firms in the US while Zucker and Darby (2001) found that 

linkages with local star scientists contributes to product development of Japanese 

biotech firms.  Geographical proximity is important because face-to-face 

communication makes UI collaborations effective.  Faculty members may visit 

firms’ laboratories to give advices or company researchers may visit university 

laboratories to perform joint research with faculty members and receive advices from 

them.  Even with the advancement of the internet, intimate collaborations require 

frequent face-to-face communication and joint research at the spot.  Just like the 

well-known fact that, in machinery production, the participation of both engineers 

and plant workers is essential for continuous productivity improvement, UI joint 

research requires continuous collaborations between academic and industry 

scientists. 

 

This fact implies that the presence of academic institutions in close proximity to 

firms, in terms both of geography and of research theme, is a prerequisite for these 

firms to undertake UI joint research and benefit from the universities’ knowledge and 

research capabilities.  This proposition will be theoretically analyzed and the 

implications discussed in Section 2.  One important consequence is that, for UI joint 

research to be carried out smoothly and fruitfully, the country must have universities 

with educational and research facilities in related fields.  The development of 

university educational and research programs in life sciences and biotechnology will 

encourage the faculty to carry out collaborations with firms aiming at industrial 

application of biotechnology. 

 

With this view in mind, we will investigate in this paper, first, how such educational 

programs developed in Japan in the last few decades and, second, how this 

development contributed to UI joint research.  The structure of the paper is as 
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follows.  After a theoretical exposition in Section 2, we will give in Section 3 an 

account of the development of UI collaborations in Japan and important policy 

changes since the latter half of the 1990s.  In Section 4, we will collect the data on 

the expansion of university educational programs (schools and departments at 

undergraduate and graduate levels) in the fields of life sciences and biotechnology in 

Japan and show that such expansion took place actively since 1985.  In Section 5, 

after explaining the data on biotechnology-related joint research contracts of 

Japanese national universities with industries during 1995-2000, we will explain our 

empirical methodology as well as the testable hypotheses derived from the 

theoretical predictions of Section 2.  In Section 6, the results of university-year 

panel regressions using the two sets of data – one on university programs and the 

other on UI joint research – will be presented.  They support our main hypothesis 

that the establishment of university life-science educational programs promotes UI 

joint research in biotechnology.  In addition, the regression results imply that the 

policies taken in Japan to foster UI collaborations had the intended effect.  Section 7 

summarizes these results and discusses their implications. 

 

2. University Programs and Joint Research – A Model 

 

Establishing a new university program on life science will result in more active UI 

joint research activities, since firms will then have a bigger chance of finding suitable 

research partners.  This proposition can be demonstrated by means of a spatial 

differentiation model a la Hotelling (1929). 

 

We consider a spectrum of research themes that are distributed along a line1 and 

assume that life-science educational and research programs of different university 

can be characterized by different locations ( ); for instance, University j is located at 

j  and University j+1, at 1j .  Location here may be understood as geographical 

                                                 
1 Hotelling assumed that players (consumers, firms, and such) are located along a 
straight line that has ends in both sides.  We ignore the presence of such ends 
because, very likely, there is no end in the distribution of themes, unlike in tastes – 
from hot to cool, or radical to conservative – or politics – from right-wing to 
left-wing.  In this regard, the model is more akin to the circular model of Salop’s 
(1979). 
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location because, as discussed above, geographical proximity between a firm and a 

university will make their joint research easier.  However, given Japan’s relative 

small size and denseness, proximity in research themes is probably a more important 

determinant of joint research.  We will thus think of location in regard to research 

themes and assume that universities have advantages in different themes; for 

example, University j may be known for its stem-cell research while University j+1 

may be known for protein research, which is why, in Figure 1, their locations, j  

and 1j , are separate along the line.  We are aware that it is a gross simplification 

to place different research themes along a uni-dimensional line and represent the 

research theme of each university’s comparative advantage by a single point on this 

line.  Nevertheless, we believe the model is not a far-fetched depiction of real firms’ 

choice of joint research partners and is useful for expositional purposes and for the 

purpose of deriving testable hypotheses. 

 

Consider a firm that is seeking an opportunity to conduct a joint research project with 

a university that preferably has knowledge and capability on research theme depicted 

by location  .  If there is a university j that is located exactly at this point (i.e., 

 j  ), the firm will of course choose University j as the partner and the expected 

return (in present value) from this collaboration will be denoted by V j .  V j  may 

differ across universities because of their different research capabilities. 

 

It is seldom, however, that the firm can find a university that perfectly fits its desired 

research theme.  Usually, there is a distance, measured by 

   j , between its 

desired theme and that of University j.  Because the expected return from joint 

research will be lower the larger the distance, we can write the return as 

V j  t    j , 

where t denotes per-distance decline in the expected return2.  This expected return is 

shown in Figure 1 by the straight lines sloping downward to both sides from the 

height of Vj at location  j .  Given the cost (in present value) of joint research at C, 

the firm will undertake joint research with University j if and only if 


V j  t    j  C .  Therefore, if C = C1, firms located between j

1  and j
1  in 

Figure 1 will undertake joint research with University j. 
                                                 
2 Needless to say, in the usual location theory, t is the per-meter (or per-mile) 
transportation cost. 
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This model, despite its simplicity, gives a few useful predictions.  First, the 

establishment of a life science program with a research theme distinct from those in 

other universities will provide new opportunities for firms that hitherto have not 

participated in any UI joint research.  Were it not for the presence of University j at 

 j , those firms located between j
1  and j

1  would not have undertaken any UI 

joint research.  Since   ( j1)
1 , these firms will not undertake joint research with 

University j+1 either.  Neither will they undertake one with University j-1 and so 

forth.  Hence, only with the establishment of University j’s program will they begin 

a UI joint research activity. 

 

Second, the establishment of a new life science program may also encourage firms to 

increase the number of joint research projects they perform with universities.  

Suppose that the cost of joint research is lower at C2.  Then, as is apparent from 

Figure 1, those firms between ( j1)
2  and j

2  will undertake two joint research 

projects, one with University j and the other with University j+1.  For these firms, 

the establishment of University j’s life-science program means an opportunity to 

increase and diversify the portfolio of their joint research projects. 

 

Third, a higher Vj will lead to a higher likelihood that the university has one or more 

joint research contract with firms, because it becomes more likely that there are firms 

satisfying 

V j  t    j  C .  Also, it will result in more firms partnering with 

University j.  Hence, if, for instance, Vj increases over time as the university 

gradually builds reputation by hiring new faculties, attracting better graduate students, 

and accumulating capabilities for scientific experiments and tests, then, more firms 

will find the university to be a more attractive research partner. 

 

These theoretical predictions will be formalized as testable hypotheses in Section 5 

and empirically tested in Section 6.  We believe that, despite its simplicity and its 

straightforward extension from the spatial differentiation model, the model will 

provide a useful framework for analyzing these and other likely consequences of the 

establishment and location (both in terms of geographical location and research 

themes) of universities. 



 9

 

3. University-Industry Collaborations and Policy Changes in Japan 

 

In the mid to late nineteenth century when Japan’s modern economy took off, 

universities played important roles in Japan's industrial and technological 

development.  As was somewhat common with the US, another late-developing 

country at the time, Japan was desperate to catch up with the advanced technologies 

of European nations.  Thus, its higher education system emphasized the acquisition 

of practical technological knowledge and skills.  Technologically knowledgeable 

people were scarce and mostly in universities; hence, industries actively sought 

information and advice from university faculties.  In electrical equipment, 

pharmaceuticals, and other industries, university faculties helped the start of today’s 

leading firms by, for example, giving advices, becoming chief technology officers, 

and starting new enterprises (Odagiri and Goto, 1996). 

 

Unfortunately, a uniform and rigid regulation began to be applied to the conduct of 

university faculties and this tendency became apparent with the post-World War II 

university reform that emphasized uniformity than flexibility (Hashimoto, 1999).  

Such regulation was strictly enforced because most of the major universities in Japan 

were national and their professors were civil servants3.  For instance, joint research 

with firms required tedious paperwork and, at times (for instance, during the 

Vietnam War and during the student movement in the late 1960s), met hostility from 

students.  Professors were not encouraged to apply for patents and could not 

become a director of a private company.  It is not that UI collaborations were absent.  

Actually, there were many cases of collaboration but they were mostly done 

informally (Odagiri, 1999).  Often, firms seconded their researchers to university 

laboratories as graduate students or visiting faculties and donated research funds to 

professors instead of sharing research costs following formal UI joint research 

contracts.  Professors often relegated the right to patent their inventions to donating 

firms instead of the universities or the professors applying for patents. 

                                                 
3 As will be shown in the next section, private universities overwhelm national ones 
in terms of the number of universities or of students; however, most major 
universities are national. 
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However, following the declaration of Science and Technology Basic Plan in 1996, 

the government took several policy initiatives to deregulate and encourage UI 

collaborations.  For example, professors can now join boards of directors of private 

companies.  Universities can now accept research funds more easily from industries 

and accept researchers dispatched from companies at university laboratories.  Many 

universities have built special facilities for UI joint research.  They can also offer 

their space to startups at a low rent, if these startups were established for the purpose 

of commercializing technologies of the university’s origin.  Also, companies can 

take advantages of special tax concession regarding their R&D expenditures spent 

for UI collaborations. 

 

Two laws were particularly important – Daigaku-tou Gijutsu Iten Sokushin Ho (the 

Law for Promoting University-Industry Technology Transfer) enacted in 1998 and 

Sangyo Katsuryoku Saisei Tokubetsu Sochi Ho (the Industrial Revitalization Law) 

enacted in 1999.  As the title of the law indicates, the first law purported to promote 

technology transfer from universities to industries.  Accordingly, the government, 

with subsidies and other policy measures, encouraged universities to establish 

technology licensing offices (TLOs) that should help faculty members in applying 

for patents and licensing them and help companies in finding suitable university 

patents to be licensed and suitable faculties to start joint research with.  The law is 

thus commonly called “the TLO Act”. 

 

The second law is usually called “the Japanese Bayh-Dole Act” because, like the US 

Bayh-Dole Act, it allowed the state not to acquire patent rights from those inventors 

making research with government funds.  In the US, after the passing of the 

Bayh-Dole Act in 1980, patent applications by universities are known to have 

significantly increased4.  Similarly, the number of university patent applications 

                                                 
4 Henderson et al. (1998) argued that most of the post Bayh-Dole increase in 
university patenting was caused by patent applications of less important inventions 
(as inferred by the frequency of citation) and/or by the entry of universities that were 
inactive applicants before the Act.  Mowery et al. (2004) extended the study period 
to find that such tendency has become less apparent in the 1990s, suggesting that 
universities have learned from patenting experience and become more selective in 
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increased in Japan after 1999 and, together with the incorporation of national 

universities to be discussed below, the number jumped to 3,756 during 2004.  Again 

similarly to the US, about a third of these applications are made in the field of life 

sciences and biotechnology.   

 

Furthermore, in 2004, the National University Corporation Law was enacted, with 

which every national university in Japan was incorporated into a semi-independent 

corporation.  Although the major part of these universities’ budget continues to be 

supported by the government, the law promoted UI collaborations further for several 

reasons.  First, incorporated universities themselves can now possess patents, 

whereas in the past university inventions belonged to the nation.  Second, as the 

faculty members are no longer civil servants, more flexible employment arrangement 

became feasible, making it easier for faculties to work for companies part-time and 

receive industry funds.  Also, universities can now offer customized employment 

conditions in order to recruit specialists with expertise on patenting, licensing, 

spinning-off, and other activities.  Third, naturally, each university now has a 

greater incentive to increase its revenue not only by offering more up-to-date courses 

but also by attracting industry funds for UI collaborations and promoting patenting 

and licensing of university inventions. 

 

With these reforms, UI collaborations have been increasing rapidly5.   The number 

of UI joint research by national universities increased from 1139 in 1990 to 4029 in 

2000 and 6767 in 2002.  The number of new startups based on university-invented 

technologies increased from 11 in 1995 to 135 in 2002 and, in 2005, the accumulated 

number of such companies in operation was more than 1000.  Though this figure is 

smaller than in the US, the increase is impressive6.  46 TLOs have been set up and 

several cases of licensing have been already reported, even if they are still few and 
                                                                                                                                          
their choice of inventions to be patented. 
5 The following statistics are available at the website of the Ministry of Education, 
Culture, Sports, Science and Technology (http://www.mext.go.jp/), although few of 
them are in English. 
6 In the US, 450 startups were formed in 2002 and the accumulated number during 
1980-2002 was 4,320 of which 2,741 were still in operation.  Source: The 
Association of University Technology Management, AUTM Licensing Survey: 
FY2002. 
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most TLOs are still suffering from loss.  

 

One of the purposes of the present study is to estimate the impact of these policies on 

UI joint research in Japan by using micro data at the university level.  Unfortunately, 

the data covers only the 1995-2000 period and we cannot examine the impact of the 

2004 law with which the national universities were incorporated.   Still, our finding 

that the number of UI joint research contracts in relation to biotechnology 

significantly increased after 1998 and 1999, respectively the years for the TLO Act 

and the Japanese Bayh-Dole Act, must indicate that the policies played expected 

roles. 

 

4. Expansion of Life Science Education in Japanese Universities 

 

Universities played a major role in the development of life sciences.  In turn, the 

development of life sciences prompted universities to change.  New research fields, 

such as molecular biology and bioinformatics, increased their importance, fostering 

universities to start new faculties and laboratories to study and teach these fields.  

Both academic and industrial demands increased for graduates with the knowledge 

on such new sciences and technologies, prompting universities to start new 

departments and graduate schools to teach these subjects.  Put differently, were it 

not for swift reorganization of universities, neither academic research nor its 

industrial application can be expected to progress. 

 

Let us take the case of Massachusetts Institute of Technology (MIT)7.  In the 1950s, 

molecular biology became an important part of the Department of Biology and, in 

the 1960s, a center for life sciences was established within the department.  In 1977, 

MIT established Whitaker College of Health Sciences and Technology, and the 

Harvard-MIT Division of Health Sciences and Technology was started as a joint 

program between Whitaker College and Harvard Medical School.  These are 

interdisciplinary programs and many of the faculties held joint appointments with 

other departments, schools, programs, and laboratories.  In addition to the usual 
                                                 
7 All the information and citation in this paragraph were taken from the websites of 
MIT and Whitehead Institute. 
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degree of MD (medical doctor), Ph. D. in Medical Engineering and Medical Physics 

(MEMP) is offered, the latter title clearly showing the interdisciplinary nature of the 

program.  In 1982, MIT also founded the Whitehead Institute for Biomedical 

Research "to identify and support the finest young minds in science".  "Each year, 

Whitehead provides advanced scientific training to more than two hundred students, 

postdoctoral fellows, physicians, and visiting scientists from around the world."  Its 

Whitehead/MIT Center for Genome Research played an important role in the 

International Human Genome Project. 

 

Similarly, at the University of California at Berkeley and Stanford University, the 

reorganization of university organizations to accommodate the progress of molecular 

biology and other life science disciplines began to be discussed around 1980 and was 

completed by 19898. 

 

We will investigate if similar developments and reorganizations of life science 

educational programs occurred in Japan.  There are three types of universities in 

Japan – national universities (founded by the central government and incorporated in 

2004 as discussed above), municipal universities (founded by local governments, 

several of which were incorporated in recent years), and private universities.  As 

shown in Table 1, there were about seven hundred universities in 2003 and, in terms 

of the number of universities, private universities dominated, accounting for three 

quarters, whereas national universities accounted for only 14 percent.  However, 

national universities accounted for 39 percent of full-time faculty members and 61 

percent of graduate students.  Apparently, national universities had a higher 

faculty-student ratio and were geared towards graduate education.  Panel B of the 

same table shows the number of degree earners by fields and by the level of 

education.  Humanities and social sciences together accounted for 57 percent of 

bachelors.  In doctors, by contrast, the top three were health, engineering and 

science (namely, natural sciences).  The statistics does not decompose these 

                                                 
8  Jong (2008) made a comparative study of the reorganization of these two 
universities and argued that the differences between them resulted because Berkeley 
is a state university whereas Stanford is a private one, Berkeley has no medical 
school whereas Stanford has one, and Stanford is closer to the Silicon Valley. 
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numbers into national vs. municipal vs. private universities; however, the two panels 

together imply that the majority of the faculty members in private universities were 

in humanities and social sciences, whereas the majority of faculty members in health, 

engineering, and natural sciences belonged to national universities.  This fact should 

suggest that, even though our analyses below of UI joint research projects in 

biotechnology will be confined to those in national universities, it is safe to assume 

that the results apply to the majority of such UI joint research in Japan.  

Furthermore, except for a few exceptions (most notably Keio and Waseda), nearly all 

the internationally known universities (e.g., Tokyo, Kyoto, Osaka, and Tokyo 

Institute of Technology) are national. 

 

We studied organizational changes of Japanese universities using Zenkoku Daigaku 

Ichiran (List of Universities in the Nation) published by Bunkyo Kyokai.  It lists the 

changes in educational and research organizations of all the Japanese universities and, 

from this source, we picked up the establishment of four types of new educational 

programs -- “undergraduate schools” (or simply “schools”), “departments” within 

undergraduate schools, “graduate schools”, and “graduate departments” within 

graduate schools -- that are related to life sciences and biotechnology.  In Japanese, 

these four programs are, respectively, gakubu, gakka, kenkyuka, and senko.  Their 

English translation can differ across universities.  In the University of Tokyo, for 

instance, there is ‘Seibutsu Gakka’ (Department of Biological Sciences) within 

‘Rigakubu’ (School of Science or, according to Tokyo’s terminology, Faculty of 

Science) for undergraduate education and, for graduate education, there is ‘Seibutsu 

Kagaku Senko’ (Graduate Department of Biological Sciences) within ‘Rigaku 

Kenkyuka’ (Graduate School of Science).  

 

Basically, we included all such programs that contain ‘life’ or ‘bio’ in their name, 

such as bioscience, biotechnology, biochemistry, bioinformatics, bioengineering, and 

life science.   Needless to say, the title of a program alone need not prove that it in 

fact teaches and makes research in the field of life sciences or biotechnology in the 

modern sense.  A bioscience department, for instance, may only teach traditional 

biological subjects, such as plant taxonomy (without denying that even such subjects 

have been radically transformed in the past few decades), or it may also teach new 
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ones.  Or, the change in name may be superficial so that the supposedly new 

department is no more than a renamed old department.  We often consulted the 

websites of the departments in question to determine if the changes are real and the 

new departments are in fact related to life sciences and biotechnology, to find that 

such ambiguous cases are actually rather rare.  Still, by no means do we deny that 

the results to be shown are subject to errors.  This difficulty is even more 

pronounced if one starts thinking about possible long-run consequences.  Suppose, 

for instance, that a university opened a new school (say, School of Life Sciences) but, 

except for just a few new hires, all the faculty members came from an existing 

organization (say, Department of Biology within the School of Sciences).  It is 

perhaps unlikely that the content of teaching is radically changed with the opening of 

the new school; still, we expect that it will gradually hire people in newer fields to 

replace those retiring and, in the long run, it will transform to a department deserving 

the new title.  With such an expectation, we basically listed up all the new 

departments and schools with relevant names. 

 

Figure 2 (for public universities, that is, national and municipal universities) and 

Figure 3 (for private universities) show the number of establishments of such 

educational programs since 1955.  Apparently, such establishments became 

common after 1985.  Before then, there were at most two establishments per year 

while, since 1985 and particularly during the 1990s, it was common that more than 

ten establishments were made.  This tendency applies to both public and private 

universities.  Between these two types of universities, public universities were more 

active in establishing these programs.  Together with the fact shown in Table 1 that 

the number of private universities is more than five times that of public universities, 

it is obvious that, while many public universities started new programs to teach 

bio-related subjects, only a very small percentage of private universities did so.  A 

large part of the establishments were made at the department level (both at the 

undergraduate and graduate levels) than at the school level, obviously because it is 

more costly and politically demanding to start new schools. 

 

It is difficult to compare this finding to that in the US mainly because, to our 

knowledge, no comparative study is available and we only know sporadic cases, such 
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as those at MIT, Berkeley, and Stanford mentioned above.  In that many Japanese 

universities started new departments during the 1980s, and that there were also cases, 

if exceptional ones, in which establishments occurred during the 1970s, it appears 

difficult to assert if Japan significantly lagged behind the US in this regard9.  Still 

there are arguments suggesting that the lag is serious in Japan.  We will come back 

to this topic in the concluding section. 

 

5. Data, Hypotheses, and Variables 

 

As mentioned earlier, UI collaborations can take a variety of forms, such as joint 

research based on contracts, commissioned research (in which industries commission 

research to university laboratories), licensing of university patents, donation of 

research funds by industries, consulting, and faculty members acting as directors or 

technical advisors in companies.  Some are based on formal contracts between the 

university and the firm(s) while others are informal, for instance, made by faculty 

members without reporting to their universities.  Consequently, it is hard to capture 

the entire collaborative activities. 

 

In this study we confine our analysis to joint research contracts between national 

universities and companies.  All the national universities were required to report 

these contracts to the Ministry of Education, Culture, Sports, Science and 

Technology (MEXT).  MEXT’s National Institute of Science and Technology 

Policy (NISTEP) made a study of these reports to analyze the trend and distribution 

of UI joint research activities (NISTEP, 2003, 2005).  With permission of NISTEP, 

                                                 
9 Earlier, Yamada and his associates (Hayashi and Yamada, 1975, and Yamada and 
Tsukahara, 1986) studied the trend of the number of researchers, the amount of 
research funds, and the number of papers and presentations, as well as the 
establishment of new departments, in high-polymer chemistry and other new 
scientific fields, and concluded that the establishment of new departments in Japan 
significantly lagged behind the international research trend.  Unfortunately, it is 
more difficult to do a similar analysis on life sciences and biotechnology because 
these correspond to broader fields and developed more continuously after the 
preceding studies in genetics and biology.  Mendel’s law, for instance, became 
known at the beginning of the 20th century. 
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we will use this data re-compiled at university levels10. 

 

We are not entirely happy with this focus on joint research contracts only; however, 

for two reasons, the results should apply reasonably well to UI collaborations in 

general.  The first is that important collaborations tend to occur through joint 

research contracts.  In our interviews, a number of company research officers 

confirmed this fact by saying that, to clarify the rights and responsibility of each 

party, they prefer joint research contracts if the projects are important or if they are 

expected to lead to patentable inventions.  Second, with the policy changes 

discussed in Section 3, universities have become more eager to conclude research 

contracts.  Many universities now have TLOs and liaison officers who help faculty 

members sign and carry out contracts.  These arrangements reduced transaction 

costs for the contracts and some companies indicated that, whereas they used to 

simply donate research funds in order to avoid bureaucratic hassles and contract 

costs, they now conclude research contracts with faculty members. 

 

The required report by universities to MEXT showed the school (which is defined in 

the sense explained in the previous section and is a more coarse classification than 

departments) involved in the contract and the industry the firm belonged.  During 

1995-2000, MEXT also asked to report if the contract is related to one of eight fields 

– biotechnology, material, energy, software, electronics, machinery development, 

civil engineering, and construction – or none of these.  Using this information, we 

only consider joint research contracts in the field of biotechnology.  The trend of 

these contracts is summarized in Table 2.  Apparently, the number of national 

universities with these contracts increased during the period, particularly after 1998, 

the year the TLO Act started.  The number of contracts per university also increased 

from 2.1 in 1995 to 7.2 in 2000. 

 

Let us now investigate if the establishment of new educational programs (schools, 

departments, graduate schools, or graduate departments) on life sciences and 

biotechnology led to more active joint research contracts in biotechnology.  From 
                                                 
10 The authors wish to thank S. Kobayashi, A. Nagata, K. Hasegawa, and other 
former and present members of NISTEP’s Second Research Group for their help. 
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the discussion in Section 2, we can derive two hypotheses.  The first concerns the 

likelihood that a university undertakes such a contract. 

Hypothesis 1-1:  A university with at least one educational program on life 

science or biotechnology is more likely to undertake one or more joint 

research contracts with companies. 

That is, with a good probability, there is a firm located between j
1  and j

1  in 

Figure 1 (given C = C1). 

 

However, there may be a lag in this effect because it may take some years before the 

new school, etc., becomes fully staffed and active in research and the activity of the 

new school becomes known to industries11.  That is, Vj (or, more precisely, firms’ 

perception of Vj) may increase over time and, hence, we have the following 

hypothesis as a variant of Hypothesis 1-1. 

Hypothesis 1-2:  A university that established its first educational program 

on life science or biotechnology earlier is more likely to undertake one or 

more joint research contracts with companies. 

 

The second group of hypotheses concerns the number of joint research contracts. 

Hypothesis 2-1:  A university with at least one educational program on life 

science or biotechnology will have a larger number of joint research contracts 

with companies. 

That is, there will be more firms located between j
1  and j

1  in Figure 1. 

 

And, similarly to Hypothesis 1-2, we have 

Hypothesis 2-2:  A university that established the first educational program 

on life science or biotechnology earlier will have a larger number of joint 

research contracts with companies. 

 

We will test these hypotheses with regressions using a panel of 95 national 
                                                 
11 Usually, establishment of a new educational program occurs on the 1st of April 
when a new academic year starts in Japan.  Joint research contracts may be 
concluded at any time of the year but, usually, a few months after April.  Hence, 
even if the start of the program and the contract take place in the same academic year, 
a few months’ delay is common. 



 19

universities over six years (1995-2000). The dependent variable to test Hypotheses 

1-1 and 1-2 is COLLABO, a dummy variable that equals one if and only if the 

university had at least one joint research contract with firms or industries in 

biotechnology (subscripts for university (j) and for year (t) are suppressed; for exact 

definitions, see Table 3).  The dependent variable to test Hypotheses 2-1 and 2-2 is 

N_COLLABO, the number of joint research contracts by the university with firms or 

industries in the field of biotechnology. 

 

The independent variable to test Hypotheses 1-1 and 2-1 is LIFE, a dummy variable 

that equals one if and only if the university had established at least one educational 

program in the field of life sciences or biotechnology.  The variable to test 

Hypotheses 1-2 and 2-2 is LIFE_AGE, the number of years since the university 

established its first educational program in the field of life sciences or biotechnology.  

In addition, to test if the effect of age is linear, we used a group of dummy variables.  

LIFE_0-4Y equals one if and only if the university established its first educational 

program in the field of life sciences or biotechnology between this year and four 

years ago.  Similarly, we define LIFE_5-9Y, LIFE_10-14Y, and LIFE_15Y, the last 

indicating that the new program started 15 years ago or earlier. 

 

In addition, we have a number of control variables that may affect the probability and 

intensity of the university’s joint research contracts.  Some of these are 

university-specific, such as the age of the university (UNIV_AGE), its size 

(UNIV_SIZE), a dummy variable (COMPRE) indicating if the university has both 

humanistic schools (including humanities and social sciences) and scientific schools 

(including natural sciences, engineering, agriculture, medical, and pharmaceutical), 

and a dummy variable (SCIENCE) indicating if the university has scientific schools 

only12.   

 

Another variable that affects the likelihood or the number of UI joint research is the 
                                                 
12 These two dummy variables are both zero if the university has only humanistic 
schools.  Since these universities may be presumed not to perform joint research on 
biotechnology, we re-estimated the equations excluding these universities (and 
excluding the SCIENCE variable).  The results are basically the same and not 
reported (see Kato and Odagiri, 2010). 
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quality of schools (or departments), because this quality determines Vj in Figure 1 

and hence the number of firms within j
1  and j

1 .  A common measure of school 

quality is the number of papers by the faculty members (preferably weighted by the 

frequency of being cited by subsequent papers or patents).  However, there is a 

causality issue.  That is, such papers will come out only after the school is 

established; hence, the number of papers must be larger for universities with 

life-science schools (or departments) and for universities with a longer history of 

such schools, causing correlation with our main dependent variables, LIFE and 

LIFE_AGE. 

 

We therefore prefer a variable indicating the intrinsic quality of the university 

whether it has a life-science school or not.  In Japan (and perhaps in many other 

countries), such quality is likely best approximated by the difficulty of being 

admitted.  All national universities select students based on two types of entrance 

examinations, one being a nationwide examination and the other being an 

examination carried out by individual universities (and in many cases by individual 

schools within universities).  Based on the estimated scores of students accepted for 

entrance, several preparatory schools publish indices of the difficulties of universities.  

This index, denoted by SCORE, is calculated as normalized standard deviation; that 

is, it equals 50 if the minimum examination score needed for admission to the school 

equals the mean of such scores over all schools and all universities (whether national, 

municipal, and private) and 60 if it is higher than the mean by one standard deviation.  

It varies across universities (with the University of Tokyo gaining the highest score) 

and across schools (with medical schools gaining the highest score in most 

universities).  The score we used is that for the school of natural sciences13.  Since 

we want it to be unaffected by the start of new schools, it was measured prior to the 

sample period, that is, in 1994. 

 

                                                 
13 In case the university does not have a school of natural sciences, we estimated it 
by extrapolation, that is, by multiplying the scores of schools present in the 
university by the mean inter-school ratios of all universities.  The score we used is 
that published by Fukutake Shoten, one of the major preparatory schools in Japan.  
A few other preparatory schools also publish the scores and the correlation among 
them is sufficiently high. 
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SCORE and UNIV_SIZE turned out to be highly correlated (r =0.424): for instance, 

the University of Tokyo is the largest and the most difficult to be admitted.  

Therefore, we will use these two variables alternatively.  Table 3 gives the 

definition of each variable and the basic statistics.  In addition, we used year 

dummies (Y1996, etc.) to control for time effects. 

 

6. Estimation Results 

 

The estimated coefficients and computed marginal effects (dF/dx) are shown in 

Tables 4 and 5.  For estimation, we used probit models to test Hypotheses 1-1 and 

1-2 and, to test Hypotheses 2-1 and 2-2, we used negative binomial models since the 

dependent variable is a count data14. 

 

Table 4 shows that both LIFE and LIFE_AGE have significantly positive coefficients, 

supporting Hypotheses 1-1 and 1-2.  A university with relevant educational 

programs is more likely to participate in joint research on biotechnology with 

industries and this probability increases with years after the establishment of such 

programs.  Equations (1-2) and (1-5) confirm that the probability increases over the 

years, although the increase becomes insignificant after ten years of the 

establishment, mainly because most universities begin joint research within ten years 

of school establishment. 

 

Table 5 supports Hypotheses 2-1 and 2-2, that is, a university with relevant programs 

tends to have a larger number of joint research contracts and the older the program 

the more contracts the university tends to have.  Equations (2-2) and (2-5) suggest 

the presence of age effect because the estimated marginal effects are larger with 

larger year lags.  Together with equations (1-2) and (1-5), it is suggested that, even 

if the probability of having at least one contract stabilizes after ten years, the number 

of contracts continues to rise, indicating the long-lasting presence of experience 

effects caused by, for example, accumulated research expertise, intensified network 

                                                 
14 All the estimations were also made with random effects.  As shown in Appendix 
Tables A1 and A2, the results are similar to those in Tables 4 and 5 and the following 
discussions basically apply with or without random effects. 
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between faculty members and industries, and learning-by-doing by the administrative 

staff on UI liaison and contracting. 

 

Both UNIV_SIZE and SCORE have significant and positive coefficients with similar 

explanatory power.  Thus, there may be a university-wide scale effect or a quality 

effect.  UNIV_AGE rarely have significant coefficients, suggesting the lack of a 

university-wide age effect.  COMPRE and SCIENCE have positive and significant 

coefficients in both probit and negative binomial models.  Interestingly, the 

computed marginal effects of SCIENCE and COMPRE are not significantly different 

in the probit model whereas SCIENCE always has larger effects than COMPRE in 

the negative binomial model, implying that universities with scientific schools only 

(e.g., Tokyo Institute of Technology and Tokyo Medical and Dental University) tend 

to be more active in joint research than comprehensive universities (e.g., the 

University of Tokyo), even though, ceteris paribus, the probability of occurrence of 

joint research hardly differs between the two types of universities.  Put differently, 

the economies of scope from having humanistic schools (including social science 

schools) in the same university appears unimportant. 

 

Finally, the coefficients of year dummies (with year 1995 as the benchmark) indicate 

that joint research has become more active over the six-year period.  In the probit 

model, the coefficients are significant for 1999 (in equation 1-1 only) and 2000.  In 

the negative binomial model, they are significant for 1998 (except in equation 2-3 

and 2-6), 1999, and 2000.  The estimated marginal effects increase with years and, 

particularly in the negative binomial model, the increase from 1998 to 1999 and then 

to 2000 is impressive. 

 

These results suggest that, in the years 1999 and 2000, more universities started to 

have UI joint research and, more evidently, the number of joint research contracts 

increased significantly.  These findings are consistent with the general trend we 

observed in Table 2 and suggest the contributions of two policy initiatives, that is, the 

enactment of the TLO Act in 1998 and the Japanese Bayh-Dole Act in 1999.  We 

are inferring the effects of these policies only with the year effects and have not 

directly tested the influences of the policies; therefore, this conclusion remains as 
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tentative.  Still, it is consistent with the view that these laws encouraged and 

assisted both universities and industries to make joint research contracts. 

 

7. Conclusions and Implications 

 

This paper studied the development of university educational programs in the fields 

of life sciences and biotechnology.  Our data on the establishment of new such 

programs (schools and departments, both at undergraduate and graduate levels) in 

Japan indicated that the majority of universities started these programs since 1985 

and particularly during the 1990s.  We then looked at the data on the number of 

joint research contracts that national universities concluded with industries in relation 

to biotechnology.  The number of contracts per university was found to have 

increased rapidly. 

 

Our university-year panel regression results indicate that these two events are related.  

A university is more likely to enter into one or more joint research contracts and tend 

to enter into more such contracts if the university has already have an educational 

program in the field of life sciences and biotechnology.  And this probability and 

tendency are stronger when the university has a longer history of these educational 

programs.  Our results also supported the hypothesis that the two major policy 

initiatives, the TLO Act in 1998 and the Japanese Bayh-Dole Act in 1999, played the 

intended role of fostering university-industry collaborations. 

 

We may draw three useful implications from these results.  First, at least in the field 

of life sciences and biotechnology, it was confirmed that the presence of educational 

institutions in related fields is a prerequisite for UI collaborations.  Often, 

establishing new programs in response to new scientific development tends to delay, 

owing to budgetary constraints and intra-university conflicts, and policy efforts are 

needed to avoid such delay.  The US universities have been said to retain greater 

autonomy and be more responsive to changing socio-economic demands (Mowery 

and Sampat, 2005).  In comparison, Japanese universities appear less responsive 

partly because most major universities are national and used to depend on state 

budgets and government regulations and guidance, and partly because 
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intra-university departmental autonomy has been emphasize, making it more difficult 

to make inter-departmental adjustments and collaborations.  Our study inquired into 

the development of new programs only for Japan.  Comparative studies on other 

countries, with national differences in university systems into considerations, are 

needed. 

 

Second, it may take several years before the establishment of a new educational 

program starts to contribute to UI joint research.  Ostensibly such time lag is 

inevitable because it takes several years before the program runs in full capacity, the 

graduate students become knowledgeable and capable enough to contribute to the 

laboratories as research assistants, the faculty members establish a network with 

companies, and the university administration accumulates sufficient capability to 

establish liaison with companies and handle research contracts.  We believe the last 

factor to be particularly important.  Even in the US, Mowery et al. (2004) argued 

that, the passage of Bayh-Dole Act of 1980 prompted inexperienced universities to 

apply for patents of little value and it took a number of years before the 

administrators of these universities accumulated sufficient capabilities to winnow out 

faculty inventions of little value (also see footnote 4 above).  The administrators of 

Japanese universities may have been even more inexperienced because national 

universities depended on the government fund and were subject to heavy regulations.  

Most inventions used to be given to industries, which then patented them and, as a 

sort of compensation, donated research funds to the inventing faculty members.  

Since the enactment of the Japanese Bayh-Dole Act and the National University 

Corporation Law, many universities set up TLOs and other liaison offices and some 

hired specialists from outside.  The number of patenting and licensing, as well as 

joint research contracts, has been increasing.  Still, even more efforts will be needed 

to foster the accumulation of experience and skills for these activities. 

 

Third, the TLO Act, which promoted the establishment of technology licensing 

offices, and the Japanese Bayh-Dole Act, which allowed universities to retain rights 

for inventions made from government-supported research projects, seem to have had 

the expected effects.  To inquire fully into the effects, we need to know also about 

patenting, licensing, and other activities.  Also, we wish to extend the period of 
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study to more recent years to know the impact of the incorporation of national 

universities in 2004.  Due to data limitation, we need to postpone these studies for 

future task.  Still, the present study indicated the importance of policy initiatives in 

fostering UI collaborations.  Particularly in such science-based fields as 

biotechnology and pharmaceuticals, the presence of universities with educational 

programs and research facilities in related fields is essential as well as the presence 

of policies and institutions that support technology transfer from universities to 

industries and joint research between them. 
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Figure 1. University-Industry Collaborations in a Spatial Model 
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Figure 2. Establishments of New Educational Programs on Life Sciences and Biotechnology: National and Municipal Universities 
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Figure 3. Establishments of New Educational Programs on Life Sciences and Biotechnology: Private Universities 
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Table 1. Universities in Japan, 2003 

 
(A) By Type of Organizations 

  National (%) Municipal (%) Private (%) Total (%) 
Number of universities 100 14.2% 76 10.8% 526 74.9% 702 100.0% 
Number of faculty members     
     full-timers 60,882 39.0% 10,977 7.0% 84,296 54.0% 156,155 100.0% 
     part-timers 40,113 25.9% 9,810 6.3% 104,747 67.7% 154,670 100.0% 
Number of students        
     undergraduates 460,483 18.4% 103,407 4.1% 1,945,484 77.5% 2,509,374 100.0% 
     graduates 142,184 61.4% 12,796 5.5% 76,509 33.1% 231,489 100.0% 

  
 

(B) By Fields: Number of Students Finishing the Course 

  Undergraduates (%) Masters (%) Doctors (%)
Humanities 93,744 17.2% 4,836 7.2% 1,383 9.5%
Social science 215,205 39.5% 9,830 14.6% 1,162 8.0%
Science 19,549 3.6% 5,722 8.5% 1,500 10.3%
Engineering 101,401 18.6% 28,498 42.3% 3,212 22.1%
Agriculture 15,933 2.9% 3,471 5.1% 1,093 7.5%
Health 30,479 5.6% 3,733 5.5% 4,561 31.4%
Mercantile marine 198 0.0% 12 0.0% － 0.0%
Home economics 10,822 2.0% 444 0.7% 50 0.3%
Education (incl. teacher training) 31,767 5.8% 5,036 7.5% 362 2.5%
Arts 15,222 2.8% 1,431 2.1% 96 0.7%
Others 10,574 1.9% 4,399 6.5% 1,093 7.5%
Total 544,894 100.0% 67,412 100.0% 14,512 100.0%
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Table 2. Number of University-Industry Joint Research Contracts in biotechnology: 

National Universities, 1995-2000 
 

 1995 1996 1997 1998 1999 2000

No. of all universities 95 95 95 95 95 95

No. of universities performing 
UI joint research 

50 51 52 57 60 64

No. of universities newly  
performing UI joint research 

 - 7 6 11 7 7

No. of contracts 204 267 274 305 427 684 

No. of contracts per university 2.1 2.8 2.9 3.2 4.5 7.2

 
Note 
“Universities newly performing UI joint research” refer to the universities who had no joint 
research contract in the previous year but had one or more in the current year.  Because of 
the presence of universities having performed joint research in the previous year but having 
none in the current year, “the number of universities newly performing UI joint research” 
may exceed the increase in “the number of universities performing UI joint research.” 
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Table 3. List of Variables and Descriptive Statistics (Number of observations: 570) 

 

Variable Name Definition Mean 
Standard 
deviation 

Dependent variables 
COLLABOj,t Equals one if and only if university j had at least one joint research contract with firms or industries in 

biotechnology in year t (dummy variable) 
0.586 0.493 

N_COLLABOj,t The number of joint research contract by university j with firms or industries in biotechnology in year t 3.675 6.437 

Independent variables 
LIFEj,t Equals one if and only if university j had established at least one educational program in the field of life 

sciences or biotechnology by year t (dummy variable)  
0.514 0.500 

LIFE_0-4Yj,t Equals one if and only if university j established its first educational program in the field of life sciences or 
biotechnology between year t-4 and year t (dummy variable)  

0.075 0.264 

LIFE_5-9Yj,t Equals one if and only if university j established its first educational program in the field of life sciences or 
biotechnology between year t-9 and year t-5 (dummy variable)  

0.204 0.403 

LIFE_10-14Yj,t Equals one if and only if university j established its first educational program in the field of life sciences or 
biotechnology between year t-14 and year t-10 (dummy variable)  

0.126 0.332 

LIFE_15Yj,t Equals one if and only if university j established its first educational program in the field of life sciences or 
biotechnology before or in year t-15 (dummy variable)  

0.109 0.312 

LIFE_AGEj,t Years since university j established its first educational program in the field of life sciences or 
biotechnology 

6.284 8.540 

UNIV_SIZEj,t The size of university j as measured by the number of new students admitted in year t at schools and 
departments at undergraduate level (thousands) 

1.075 1.815 

SCOREj Index (normalized standard deviation) of the minimum examination score needed for admission to the 
school of science (undergraduate) in 1994 

56.231 5.424 

UNIV_AGEj,t Years since establishment of university j  42.879 11.589 
COMPREj,t Equals one if and only if university j has both humanistic and scientific schools (dummy variable)  0.505 0.500 
SCIENCEj,t Equals one if and only if university j has scientific schools only (dummy variable) 0.295 0.456 
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Table 4. Occurrence of UI Joint Research: Probit model 

 Dependent Variable: COLLABO 

 (1-1) (1-2) (1-3) (1-4) (1-5) (1-6) 

Variable Coeff. dF/dx Coeff. dF/dx Coeff. dF/dx Coeff. dF/dx Coeff. dF/dx Coeff. dF/dx 

LIFE 1.197*** 0.438   1.367*** 0.494  

 (0.167) (0.055)   (0.165) (0.051)  

LIFE_0-4Y   0.999*** 0.305 1.007*** 0.306

   (0.234) (0.051) (0.237) (0.051)

LIFE_5-9Y   1.256*** 0.391 1.461*** 0.432

   (0.211) (0.048) (0.216) (0.044)

LIFE_10-14Y   1.367***  0.388 1.550***  0.414

   (0.268) (0.047) (0.263) (0.040)

LIFE_15Y   1.438***  0.392 1.732***  0.428

   (0.364) (0.055) (0.334) (0.038)

LIFE_AGE     0.088*** 0.033  0.101*** 0.038

     (0.016) (0.006)  (0.015) (0.005)

UNIV_SIZE 0.508***  0.195 0.432** 0.166 0.308* 0.116  

 (0.149) (0.057) (0.169) (0.065) (0.161) (0.060)  

SCORE     0.046*** 0.018 0.043*** 0.017 0.290* 0.011

     (0.015) (0.006) (0.016) (0.006) (0.016) (0.006)

UNIV_AGE -0.002  -0.001 -0.0001 -0.00004 0.004 0.001 0.005 0.002 0.005 0.002 0.007 0.003

 (0.007) (0.003) (0.007) (0.003) (0.007) (0.003) (0.007) (0.003) (0.007) (0.003) (0.007) (0.003)

COMPRE 1.170*** 0.428 1.136*** 0.416 1.420*** 0.497 1.481*** 0.527 1.350*** 0.484 1.574*** 0.540

 (0.257) (0.087) (0.263) (0.089) (0.247) (0.079) (0.244) (0.075) (0.250) (0.080) (0.237) (0.073)

SCIENCE 1.676*** 0.516 1.647*** 0.507 1.674*** 0.493 1.612*** 0.505 1.585*** 0.492 1.616*** 0.477

 (0.226) (0.055) (0.226) (0.056) (0.220) (0.054) (0.229) (0.057) (0.227) (0.057) (0.220) (0.055)

Y1996 0.027 0.010 0.005 0.002 -0.016 -0.006 0.020 0.008 -0.017 -0.007 -0.025 -0.009

 (0.224) (0.086) (0.224) (0.086) (0.217) (0.082) (0.222) (0.085) (0.223) (0.086) (0.216) (0.081)

Y1997 0.045 0.017 0.020 0.007 -0.020 -0.008 0.040 0.015 -0.004 -0.002 -0.038 -0.014

 (0.224) (0.086) (0.224) (0.086) (0.219) (0.082) (0.222) (0.085) (0.224) (0.086) (0.218) (0.082)

Y1998 0.265 0.099 0.232 0.087 0.150 0.055 0.237 0.089 0.188 0.071 0.117 0.043

 (0.230) (0.083) (0.232) (0.084) (0.226) (0.081) (0.229) (0.083) (0.231) (0.085) (0.225) (0.081)

Y1999 0.406* 0.149 0.357 0.131 0.224 0.081 0.371 0.137 0.308 0.114 0.179 0.065

 (0.230) (0.079) (0.234) (0.081) (0.228) (0.080) (0.229) (0.080) (0.234) (0.082) (0.226) (0.080)

Y2000 0.572** 0.203 0.519** 0.185 0.407* 0.143 0.499** 0.181 0.440* 0.159 0.344 0.122

 (0.236) (0.075) (0.242) (0.078) (0.236) (0.077) (0.234) (0.077) (0.239) (0.080) (0.233) (0.077)

Constant term -2.132***   -2.091***  -2.028*** -4.625*** -4.435*** -3.574***

 (0.359)  (0.360)  (0.352) (0.921) (0.977) (0.955)

Number of obs. 570 570 570 570 570 570 

Pseudo R2 0.394 0.396 0.370 0.391 0.397 0.369 

Log likelihood -234.239 -233.378 -243.635 -235.549 -233.144 -243.911 

Notes: COLLABO = N_COLLABO=0 in 236 observations (that is, no UI joint research contract was made in 236 university-year combinations). Standard errors 
are shown in parentheses. The significance level is shown by ***(1%), **(5%), and *(10%). 
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Table 5. Determinants of the Number of UI Joint Research Contracts: Negative binomial model 
 

 Dependent Variable: N_COLLABO 

 (2-1) (2-2) (2-3) (2-4) (2-5) (2-6) 

Variable Coeff. dF/dx Coeff. dF/dx Coeff. dF/dx Coeff. dF/dx Coeff. dF/dx Coeff. dF/dx 

LIFE 1.473*** 2.102   1.596*** 2.276  

 (0.156) (0.295)   (0.152) (0.301)  

LIFE_0-4Y   1.214*** 2.876 1.158*** 2.644

   (0.213) (0.836) (0.212) (0.784)

LIFE_5-9Y   1.446*** 3.223 1.575*** 3.675

   (0.173) (0.647) (0.169) (0.697)

LIFE_10-14Y   1.557***  4.097 1.690***  4.718

   (0.189) (0.922) (0.183) (1.001)

LIFE_15Y   1.983***  6.722 2.023***  6.959

   (0.224) (1.639) (0.206) (1.567)

LIFE_AGE     0.066*** 0.093  0.072*** 0.103

     (0.009) (0.015)  (0.009) (0.015)

UNIV_SIZE 0.709***  0.945 0.495** 0.659 0.319*** 0.454  

 (0.086) (0.137) (0.107) (0.151) (0.111) (0.161)  

SCORE     0.069*** 0.091 0.054*** 0.071 0.020* 0.028

     (0.009) (0.013) (0.010) (0.015) (0.012) (0.017)

UNIV_AGE 0.0005  0.001 0.007 0.009 0.022 0.032 0.008 0.010 0.011* 0.015 0.026 0.037

 (0.006) (0.008) (0.007) (0.009) (0.006) (0.009) (0.006) (0.008) (0.006) (0.008) (0.006) (0.009)

COMPRE 2.270*** 3.675 2.305*** 3.752 2.958 *** 5.821 2.885*** 5.172 2.692*** 4.670 3.201*** 6.683

 (0.396) (0.706) (0.398) (0.720) (0.386) (0.930) (0.391) (0.853) (0.391) (0.798) (0.385) (1.027)

SCIENCE 3.221*** 12.410 3.177*** 12.000 3.460*** 15.799 3.141*** 11.528 3.098*** 11.227 3.386*** 15.049

 (0.384) (2.858) (0.383) (2.760) (0.382) (3.535) (0.387) (2.680) (0.383) (2.592) (0.381) (3.372)

Y1996 0.236 0.341 0.198 0.282 0.110 0.162 0.225 0.320 0.173 0.243 0.103 0.152

 (0.184) (0.289) (0.182) (0.278) (0.185) (0.283) (0.181) (0.278) (0.179) (0.267) (0.185) (0.284)

Y1997 0.309* 0.458 0.255 0.371 0.101 0.149 0.293 0.425 0.219 0.312 0.087 0.129

 (0.184) (0.305) (0.183) (0.292) (0.185) (0.282) (0.182) (0.293) (0.181) (0.278) (0.186) (0.282)

Y1998 0.416** 0.641 0.354* 0.534 0.162 0.243 0.387** 0.582 0.304* 0.446 0.139 0.209

 (0.183) (0.327) (0.184) (0.314) (0.184) (0.292) (0.180) (0.312) (0.181) (0.296) (0.184) (0.290)

Y1999 0.828*** 1.496 0.725*** 1.257 0.446** 0.742 0.770*** 1.341 0.649*** 1.085 0.404** 0.665

 (0.181) (0.447) (0.186) (0.422) (0.182) (0.357) (0.179) (0.416) (0.183) (0.388) (0.182) (0.348)

Y2000 1.271*** 2.764 1.135*** 2.327 0.811*** 1.551 1.163*** 2.381 1.023*** 1.986 0.747*** 1.401

 (0.178) (0.625) (0.186) (0.581) (0.181) (0.470) (0.175) (0.560) (0.181) (0.517) (0.179) (0.446)

Constant term -3.860***   -3.883***  -4.147*** -7.603*** -6.750*** -5.174***

 (0.465)  (0.468)  (0.465) (0.692) (0.742) (0.832)

Number of obs. 570 570 570 570 570 570 

Pseudo R2 0.175 0.179 0.163 0.175 0.181 0.161 

Log likelihood -1066.246 -1060.871 -1080.977 -1065.813 -1058.817 -1083.728 

Notes: See the notes to Table 4. 
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Appendix A. Additional estimations 

Table A1. Occurrence of UI Joint Research: Random-effects probit model 
 

 Dependent Variable: COLLABO 

 (A1-1) (A1-2) (A1-3) (A1-4) (A1-5) (A1-6) 

Variable Coeff. Coeff. Coeff. Coeff. Coeff. Coeff. 

LIFE 1.673***   1.946***   
 (0.417)   (0.412)   
LIFE_0-4Y  1.473***   1.590***  
  (0.476)   (0.479)  
LIFE_5-9Y  1.805***   2.060***  
  (0.492)   (0.489)  
LIFE_10-14Y  1.901***   2.179***  
  (0.597)   (0.583)  
LIFE_15Y  2.234**   2.814***  
  (0.928)   (0.861)  
LIFE_AGE   0.113***   0.138 
   (0.041)   (0.039) 
UNIV_SIZE 1.033** 0.891* 0.856*    
 (0.429) (0.464) (0.494)    
SCORE    0.072* 0.062 0.041 
    (0.039) (0.042) (0.046) 
UNIV_AGE -0.001 0.001 0.005 0.011 0.011 0.016 
 (0.019) (0.019) (0.021) (0.018) (0.018) (0.019) 
COMPRE 2.161*** 2.093*** 2.692*** 2.771*** 2.542*** 3.105*** 
 (0.716) (0.730) (0.754) (0.691) (0.696) (0.732) 
SCIENCE 3.010*** 2.954*** 3.188*** 2.794*** 2.747*** 2.972*** 
 (0.665) (0.661) (0.707) (0.639) (0.633) (0.671) 
Y1996 0.045 0.016 0.007 0.039 -0.002 -0.007 
 (0.287) (0.288) (0.283) (0.283) (0.286) (0.279) 
Y1997 0.104 0.066 0.034 0.088 0.035 -0.008 
 (0.289) (0.292) (0.288) (0.286) (0.289) (0.284) 
Y1998 0.457 0.412 0.329 0.414 0.356 0.253 
 (0.297) (0.301) (0.301) (0.294) (0.298) (0.294) 
Y1999 0.721** 0.662** 0.543* 0.638** 0.570* 0.426 
 (0.308) (0.318) (0.316) (0.303) (0.311) (0.305) 
Y2000 0.965*** 0.898*** 0.840** 0.837*** 0.767** 0.693** 
 (0.322) (0.331) (0.336) (0.312) (0.320) (0.320) 
Constant term -3.783*** -3.716*** -3.823*** -7.603*** -6.994*** -5.929** 
 (0.951) (0.950) (1.013) (2.378) (2.501) (2.680) 

Number of obs. 570 570 570 570 570 570 

Log likelihood -194.311 -193.861 -198.119 -196.038 -194.821 -199.410 

Notes: COLLABO = N_COLLABO=0 in 236 observations (that is, no UI joint research contract was made in 236 university-year 
combinations). Standard errors are shown in parentheses. The significance level is shown by ***(1%), **(5%), and *(10%).
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Table A2. Determinants of the Number of UI Joint Research Contracts:                     
Random-effects negative binomial model 

 
 Dependent Variable: N_COLLABO 

 (A2-1) (A2-2) (A2-3) (A2-4) (A2-5) (A2-6) 
Variable Coeff. Coeff. Coeff. Coeff. Coeff. Coeff. 

LIFE 1.262***   1.333***   
 (0.314)   (0.312)   
LIFE_0-4Y  1.242***   1.283***  
  (0.328)   (0.327)  
LIFE_5-9Y  1.223***   1.283***  
  (0.318)   (0.316)  
LIFE_10-14Y  1.228***   1.310***  
  (0.330)   (0.325)  
LIFE_15Y  1.657***   1.694***  
  (0.393)   (0.381)  
LIFE_AGE   0.052***   0.052*** 
   (0.018)   (0.019) 
UNIV_SIZE 0.605*** 0.459** 0.357    
 (0.185) (0.204) (0.222)    
SCORE    0.068*** 0.054** 0.036 
    (0.020) (0.021) (0.025) 
UNIV_AGE 0.004 0.007 0.022* 0.011 0.012 0.027** 
 (0.014) (0.014) (0.013) (0.014) (0.014) (0.013) 
COMPRE 2.469*** 2.545*** 2.962*** 2.964*** 2.908*** 3.304*** 
 (0.531) (0.533) (0.513) (0.516) (0.516) (0.510) 
SCIENCE 3.085*** 3.055*** 3.250*** 2.973*** 2.958*** 3.175*** 
 (0.491) (0.493) (0.495) (0.500) (0.497) (0.496) 
Y1996 0.259** 0.258** 0.213** 0.249** 0.247** 0.206* 
 (0.107) (0.107) (0.108) (0.106) (0.106) (0.108) 
Y1997 0.263** 0.256** 0.152 0.233** 0.230** 0.135 
 (0.111) (0.111) (0.116) (0.110) (0.110) (0.114 
Y1998 0.400*** 0.382*** 0.209* 0.341*** 0.331*** 0.176 
 (0.112) (0.116) (0.125) (0.110) (0.112) (0.120) 
Y1999 0.760*** 0.733*** 0.499*** 0.663*** 0.651*** 0.445*** 
 (0.113) (0.121) (0.137) (0.109) (0.115) (0.127) 
Y2000 1.248*** 1.201*** 0.923*** 1.133*** 1.106*** 0.858*** 
 (0.118) (0.131) (0.152) (0.111) (0.119) (0.137) 
Constant term -2.039** -2.043** -2.370*** -5.764*** -4.999*** -4.325*** 
 (0.792) (0.801) (0.788) (1.399) (1.469) (1.644) 

Number of obs. 570 570 570 570 570 570 

Log likelihood -915.683 -913.982 -918.731 -914.554 -913.147 -918.973 

Note: See the notes to Table A1. 

 


