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This paper develops a dynamic game model of an asymmetric oligopoly with a
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1 Introduction

Is increasing competition, i.e., an exogenous increase in the number of firms, beneficial

to social welfare in an oligopoly? This is one of the primary interests in economics

and there is a considerable literature based on static Cournot-Nash models. When all the

oligopolistic firms have an identically constant marginal cost and no fixed cost, increasing

the number of firms benefits welfare. However, it is stringent whether welfare improves

as a result of increasing competition under asymmetric costs among firms. In a seminal

work, Lahiri and Ono (1988, Proposition 2, p. 1201) find that ‘national welfare increases

if a firm with a sufficiently low share is removed from the market.’ This result has long

had a great influence on the policymaking of competition.

Are these results still valid even in a resource oligopoly as well? To give an answer,

this paper constructs a differential game model of a renewable and open access resource

oligopoly. A typical example is a transboundary fishery. Suppose that efficient Northern

firms and inefficient Southern firms compete in not only the world output market but

also global fishery. In such a world, there is no world government and thus extraction

is completely decentralized by private firms, the number of which is fixed even though

the resource has open access. Within this framework, we prove that an increase in the

number of efficient firms harms welfare as is opposed to the static result. Therefore,

it straightforwardly from this result that ‘helping any firms reduces welfare.’ What is

worth noting is that our results need no assumption on the initial market share of efficient

firms.1 It is the closed-loop property of feedback strategies that plays a central role in

our arguments. While closed-loop effects are a priori absent in any static analysis, they

are quite relevant in dynamic environments, particularly in dynamic games. Our result

is an example where the closed-loop effects can dominate the static effects, which yields

a sharp contrast between the static and dynamic outcomes.

We are not the first to identify the role of closed-loop properties of feedback strate-

gies in dynamic games. Constructing a differential game model of a renewable resource

duopoly, Benchekroun (2003) demonstrates that a unilateral production restriction on

1The Lahiri-Ono (1988) proposition requires that the initial market share of the efficient firms be
large enough.
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a firm can decrease the resource stock. Allowing for an arbitrary number of (symmet-

ric) firms in the same model, Benchekroun (2008) proves that increasing the number of

firms reduces the resource stock and the industry output in the long-run. Lohoues (2006)

introduces heterogeneity in marginal cost and the number of firms in the Benchekroun

(2008) model and characterizes the feedback Nash equilibrium. One of Lohoues’ (2006)

notable results is that the low-cost firm’s feedback strategy exhibits jumps in the presence

of asymmetric costs. However, he is mainly interested in characterizing the equilibrium,

leaving comparative statics/dynamics out.

The paper is organized as follows. Section 2 presents the model and Section 3 char-

acterizes the feedback Nash equilibria. Section 4 states and discusses the main results.

Section 5 concludes the paper. The appendices prove the results in the main text.

2 A model

Consider an oligopoly consisting of m ≥ 1 efficient firms with zero marginal cost and

n ≥ 1 inefficient firms with a positive marginal cost c. Fixed costs are assumed away.

During production, firms extract a renewable resource with the following dynamics:

Ṡ = kS −
m∑

i=1

xi −
n∑

j=1

xj, S(0) : given, k > 0, (1)

where S is a stock of the resource, xi represents an efficient firm’s output and xj represents

an inefficient firm’s output.2 The parameter k denotes a natural growth rate of the

resource. Assuming linear inverse demand p = a −∑m
i=1 xi −

∑n
j=1 xj, a > c, where p is

the price, each firm’s profit maximization problem is formulated as

max
xi

∫ ∞
0

e−rt

a−

m∑

i=1

xi −
n∑

j=1

xj


 xidt

max
xj

∫ ∞
0

e−rt

a− c−

m∑

i=1

xi −
n∑

j=1

xj


 xjdt

subject to (1),

2Benchekroun (2008, 2003) and Lohoues (2006) assume an inverted-V shaped dynamics of resource
accumulation, namely, the resource decreases if its stock is sufficiently large. On the other hand, some
previous studies, e.g., Tornell and Velasco (1992), Benchekroun and Long (2002) and Long and Wang
(2009), use linear resource dynamics.
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where r > 0 denotes a constant rate of discount.

3 Feedback Nash equilibria

We seek stationary feedback strategies of this dynamic game. Stationary feedback strate-

gies are a decision rule such that each firm’s extraction is a function of the current resource

stock only: xi = xi(S) and xj = xj(S) with xi(S) ≥ 0 and xj(S) ≥ 0 for any S ≥ 0, and

xi(0) = xj(0) = 0. An n+m-tuple of strategies constitutes a feedback Nash equilibrium

if it solves the problem defined above for i = 1, · · · ,m and j = 1, · · · , n.3

We employ a technique by Tsutsui and Mino (1990) and Shimomura (1991) to derive

the feedback Nash equilibrium.4 It begins by defining firm i’s Hamilton-Jacobi-Bellman

(HJB) equation:

rVi(S) = max
xi






a− xi −

m∑

l=1,l 6=i
xl(S)−

n∑

j=1

xj(S)


xi + V ′i (S)


kS − xi −

m∑

l=1,l 6=i
xl(S)−

n∑

j=1

xj(S)





 ,

(2)

where Vi(·) is a value function of firm i:

Vi(S) ≡ max
xi




∫ ∞
t

e−r(τ−t)

a− xi −

m∑

l=1,l 6=i
xl(S)−

n∑

j=1

xj(S)


 xidτ

∣∣∣

Ṡ = kS − xi −
m∑

l=1,l 6=i
xl(S)−

n∑

j=1

xj(S), S(t) : given



 .

Maximizing the right-hand side of (2) and assuming that all the efficient (resp. inef-

ficient) firms choose xi(S) (resp. xj(S)), we have the first-order condition of the efficient

firms: V ′i (S) = a − (m + 1)xi(S) − nxj(S). Substituting this into (2) yields an identity

in S:

rVi(S) = [a−mxi(S)− nxj(S)] xi(S) + [a− (m+ 1)xi(S)− nxj(S)] [kS −mxi(S)− nxj(S)] ,

3These definitions of strategies and equilibrium owe to Benchekroun (2008) and Lohoues (2006). Note
that any stationary feedback Nash equilibrium is subgame perfect in an autonomous game defined above
(see Dockner et al. 2000, p. 105).

4The reason for choosing the Tsutsui-Mino-Shimomura technique for deriving feedback strategies is
simply that it is more convenient for our purpose than guessing quadratic value functions. Appendix A
briefly derives the same solution through the latter approach.

4



in view of the symmetry in each group of firms. Differentiating both sides with respect

to S and rearranging terms, we have an auxiliary differential equation:

[
2m2xi(S) + 2mnxj(S)− (m− 1)a− (m+ 1)kS

]
x′i(S)

+ [2mxi(S) + 2nxj(S)− a− kS]nx′j(S)

= (k − r) [(m+ 1)xi(S) + nxj(S)− a] . (3)

Applying the same procedure to the inefficient firms’ problem, we have a counterpart

of firm j:

[2mxi(S) + 2nxj(S)− (a− c)− kS]mx′i(S)

+
[
2mnxi(S) + 2n2xj(S)− (n− 1)(a− c)− (n+ 1)kS

]
x′j(S)

= (k − r) [mxi(S) + (n+ 1)xj(S)− (a− c)] . (4)

Feedback Nash equilibrium strategies are determined by solving the system of differ-

ential equations (3) and (4).5 However, since it is almost impossible to explicitly solve

the system, we focus on linear strategies: xi(S) = αiS + βi and xj(S) = αjS + βj, where

αi, αj, βj and βj are undetermined coefficients. Under these specifications, (3) and (4)

become

[
2m2(αiS + βi) + 2mn(αjS + βj)− (m− 1)a− (m+ 1)kS

]
αi

+ [2m(αiS + βi) + 2n(αjS + βj)− a− kS]nαj

= (k − r) [(m+ 1)(αiS + βi) + n(αjS + βj)− a] (5)

[2m(αiS + βi) + 2n(αjS + βj)− (a− c)− kS]mαi

+
[
2mn(αiS + βi) + 2n2(αjS + βj)− (n− 1)(a− c)− (n+ 1)kS

]
αj

= (k − r) [m(αiS + βi) + (n+ 1)(αjS + βj)− (a− c)] , (6)

which are rewritten as

∆iS +
[
2m2αi + 2mnαj − (m+ 1)(k − r)

]
βi

5See Dockner et al. (2000, pp. 96-97).
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+ [2mαi + 2nαj − k + r]nβj + [k − r − (m− 1)αi − nαj] a = 0 (7)

∆jS + [2mαi + 2nαj − k + r]mβi

+
[
2mnαi + 2n2αj − (n+ 1)(k − r)

]
βj + [k − r −mαi − (n− 1)αj] (a− c) = 0

(8)

∆i ≡
[
2m2αi + 2mnαj − (m+ 1)(2k − r)

]
αi + (2mαi + 2nαj − 2k + r)nαj

∆j ≡ (2mαi + 2nαj − 2k + r)mαi +
[
2mnαi + 2n2αj − (n+ 1)(2k − r)

]
αj.

The four coefficients are determined as follows. First, αi and αj are determined so

that the terms multiplied by S are zero, i.e., ∆i = ∆j = 0. Subtracting ∆j from ∆i

yields ∆i −∆j = −(2k − r)(αi − αj) = 0, from which we see that αi = αj = α. Hence,

substituting αi = αj = α into either ∆i = 0 or ∆j = 0 and solving the resulting equation

for α, we obtain

α = 0,
(2k − r)(m+ n+ 1)

2(m+ n)2
. (9)

On the other hand, βi and βj are determined through the system of equations obtained

by setting the constant terms in (7) and (8) to zero:
[

2m2αi + 2mnαj − (m+ 1)(k − r) [2mαi + 2nαj − k + r]n
[2mαi + 2nαj − k + r]m 2mnαi + 2n2αj − (n+ 1)(k − r)

] [
βi
βj

]

=

[
− [k − r − (m− 1)αi − nαj] a

− [k − r −mαi − (n− 1)αj] (a− c)
]
.

The solution to this system is

βi =
[k − r − (m+ n− 1)α] {(k − r)a+ [k − r − 2(m+ n)α]nc}

(k − r) [(m+ n+ 1)(k − r)− 2(m+ n)2α]
(10)

βj =
[k − r − (m+ n− 1)α] {(k − r)a− [(m+ 1)(k − r)− 2m(m+ n)α] c}

(k − r) [(m+ n+ 1)(k − r)− 2(m+ n)2α]
. (11)

Substituting (9) into (10) and (11), the closed form of βi and βj is computed. Note here

that α = 0 corresponds to the static Cournot-Nash outcome because (10) and (11) show

that

xi = (αS + βi)α=0 =
a+ nc

m+ n+ 1

xj = (αS + βj)α=0 =
a− (m+ 1)c

m+ n+ 1
.
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In the subsequent arguments, we restrict attention to the case where both types of

firms employ an interior feedback strategy since there is nothing new in the case where

static outputs are chosen. This is justified by assuming that the initial resource stock

belongs to [−βj/α, [a − (m + 1)c − (m + n + 1)βj]/[(m + n + 1)α].67 In addition, we

assume r → 0 since it is too difficult to facilitate analysis for an arbitrary r.8 Under

these restrictions, the coefficients obtained above are

α =
k(m+ n+ 1)

(m+ n)2
> 0 (12)

βi =
−(m+ n)a+ n(m+ n+ 2)c

(m+ n)3(m+ n+ 1)
(13)

βj =
−(m+ n)a− [2m+ (m+ n)(m− 1)]c

(m+ n)3(m+ n+ 1)
< 0. (14)

Assuming that a is sufficiently larger compared to c to ensure βi < 0, substitution of

(12)-(14) into xi(S) = αS + βi and xj(S) = αS + βj yields the feedback strategy of each

firm as follows.9

xi(S) =





0 if S < −βj
α

αS + βi if −βj
α
≤ S < a−(m+1)c−(m+n+1)βj

(m+n+1)α
a+nc
m+n+1

if S ≥ a−(m+1)c−(m+n+1)βj
(m+n+1)α

(15)

xj(S) =





0 if S < −βj
α

αS + βj if −βj
α
≤ S < a−(m+1)c−(m+n+1)βj

(m+n+1)α
a−(m+1)c
m+n+1

if S ≥ a−(m+1)c−(m+n+1)βj
α

. (16)

Roughly speaking, (15) and (16) state that feedback strategy outputs are zero (resp.

static output) if S is sufficiently small (resp. large) and linearly increasing in S if it is in

a certain closed interval.

We draw two notes on the equilibrium strategies above. First, each firm voluntarily

stops extraction if the resource stock is low enough. That is, ‘firms prefer to let the asset

grow and refrain from any exploitation as long as the stock has not reached its maturity

6See Tsutsui and Mino (1990) and Dockner and Long (1993). More recent examples to impose the
same assumptions are found in Itaya and Shimomura (2001) and Rubio and Casino (2002).

7‘Interior’ here means that α is non-zero.
8Setting r → 0 is often observed in the existing literature as well, e.g., Fershtman and Kamien (1987),

Tsutsui and Mino (1990) and Dockner and Long (1993).
9See also Proposition 1 of Benchekroun (2003, 2008) and of Lohoues (2006).
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threshold.’ (Benchekroun, 2008, p. 242) Second, the efficient firms’ strategy exhibits

jumps at S = −βj/α and S = [a − (m + 1)c − (m + n + 1)βj]/α whereas the inefficient

firms’ strategies are globally continuous.

The intuitions behind these jumps in the efficient firms’ equilibrium output are as

follows. Suppose first that S is small enough to satisfy S < −βj/α. Then, the efficient

firms find it more profitable to wait for resource accumulation than to begin producing.

If they produce positive output at such a small resource, they immediately run out of the

resource and can not produce any more since feedback strategies require that xi(0) = 0.

Thus, the efficient firms voluntarily quit production until S exceed −βj/α. On the other

hand, the jump at S = [a−(m+1)c−(m+n+1)βj]/[(m+n+1)α] is explained as follows.

When the resource stock reaches this level, the inefficient firms switch their output from

αS+βj to the static Cournot level. Given this, it is more profitable for the efficient firms

to choose a larger output between αS + βi and static Cournot output. Accordingly, the

efficient firms also abandon αS+βi and choose static Cournot output. For these reasons,

the efficient firms’ equilibrium output exhibits two jumps.

4 The main results

This section establishes the main results. Let us first consider the effect of an increase

in the number of efficient firms on steady state welfare. For this purpose, define steady

state welfare U as follows.

U = CS +mπi + nπj

=
(mxi + nxj)

2

2
+m(a−mxi − nxj)xi + n(a− c−mxi − nxj)xj

=
(kS)2

2
+ (a− kS)mxi + (a− c− kS)nxj (17)

=
(kS)2

2
+ (a− kS)(mxi + nxj)− ncxj

=
(kS)2

2
+ (a− kS)kS − ncxj

=
kS(2a− kS)

2
− ncxj, (18)
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where CS denotes consumer surplus, πi is each efficient firm’s profit and πj is each

inefficient firm’s profit. Rearrangements after (17) use the steady state condition that

Ṡ = kS −mxi − nxj = 0, namely, mxi + nxj = kS.

Based on preliminary analyses so far, we can state a striking effect of increasing the

number of efficient firms:

Proposition 1. An increase in the number of efficient firms reduces steady state welfare.

Proof. See Appendix B.

In order to understand implications of Proposition 1 better, we prove a useful result.

Lemma 1. The steady state in the feedback Nash equilibrium involves over-exploitation

of the resource as compared to social optimum.

Proof. Social optimum in our context is defined by the solution to the following welfare-

maximizing problem:

max
xi,xj

∫ ∞
0

e−rtU(xi, xj)dt

subject to Ṡ = kS −mxi − nxj, S(0) : given,

where U(xi, xj) is the sum of consumer surplus and aggregate profits:

U(xi, xj) ≡ (mxi + nxj)
2

2
+m(a−mxi − nxj)xi + n(a− c−mxi − nxj)xj.

Since this is a single agent’s optimal control problem, it can be solved with a Hamiltonian:

H = U(xi, xj)+λ(kS−mxi−nxj), where λ is a costate variable. The maximum principle

gives the following first-order conditions:

m(a−mxi − nxj − λ) ≤ 0, xi ≥ 0, mxi(a−mxi − nxj − λ) = 0 (19)

n(a− c−mxi − nxj − λ) ≤ 0, xj ≥ 0, nxj(a− c−mxi − nxj − λ) = 0 (20)

λ̇ = (r − k)λ (21)

Ṡ = kS −mxi − nxj (22)
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lim
t→∞ e

−rtλS = 0.

It naturally follow from (19) and (20) that xj = 0, i.e., the social optimum drives inef-

ficient firms out of the market and that mxi = a − λ. Substituting this into (22), the

equilibrium system reduces to

[
λ̇

Ṡ

]
=

[
r − k 0

1 k

] [
λ
S

]
+

[
0
−a

]
.

It is easy to confirm that the steady state is a stable saddle point under k > r and that

the steady state level of S becomes SO = a/k, where superscript O stands for social

optimum.10 Comparing SE in (30) with SO, we have

SO − SE =
a

k
− (m+ n)a− nc
k(m+ n)(m+ n+ 1)

=
(m+ n)2a+ nc

k(m+ n)(m+ n+ 1)
> 0.

That is, the steady state resource stock in the oligopoly equilibrium is less compared to

the socially optimal level.

Lemma 1 states that over-exploitation or the tragedy of the commons survives our

model. This is simply because the resource has open access.11

We now discuss what causes Proposition 1, which sharply contrasts to conventional

wisdom that increasing the number of efficient firms benefits welfare. The effects of an

increase in m are depicted in Figure 2.

(Figure 1 around here)

Our model admits two effects of an increase in m on welfare. On the one hand, it

expands industry output and lowers price, which has an incremental effect on consumer

surplus and welfare. This effect can be called a static effect. Note further that an

increase in m improves welfare by mitigating the distortion that comes from the presence

of high-cost firms. On the other hand, an increase in m decreases the resource stock by

10In the limiting case where r → 0, it is trivially satisfied that k > r.
11‘Open access’ means an inability to restrict access to the resource, which is distinguished from a

‘common property’ referring to the resource collectively owned by a group of owners (Bulte et al., 1995,
and Brander and Taylor, 1997).
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accelerating over-exploitation.12 Taking into account this decrease in S, all firms reduce

output since feedback strategies are increasing in S (recall that x′i(S) = x′j(S) = α > 0).

This can be called a closed-loop effect. Because all firms reduce output, the industry

output and consumer surplus will inevitably decrease.

Since the static effect positively affects welfare and the closed-loop effect negatively

affects welfare, the total effect seems ambiguous. Nevertheless, Proposition 1 states that

the latter effect necessarily dominates the former effect, which unambiguously results

in welfare losses. In other words, the intertemporally strategic interaction through the

change in the resource stock plays a dominant role and outweighs the potentially beneficial

effect.13

Proposition 1 straightforwardly leads to:

Corollary 1. An increase in the number of inefficient firms reduces steady state welfare.

A remark is attached to this result. In Lahiri and Ono’s (1988) argument, increasing

the number of inefficient firms has two competing effects. One is a procompetitive effect

and the other is a profit-shifting effect from efficient firms to inefficient firms. Their

conclusion that ‘helping minor firms reduces welfare’ rests on an additional assumption

that the efficient firms’ share is initially large enough. Unless this is satisfied, increasing

the number of inefficient firms still benefits welfare. In contrast, both Proposition 1 and

Corollary 1 need no such assumption. What is relevant is that increasing competition

reduces the total output through the closed-loop effects of feedback strategies.

At this stage, someone may be interested in what would happen if static Cournot

outputs were to be chosen.14 This confirms the conventional wisdom:

12Even in the absence of oligopolistic interactions in the output market, over-exploitation easily occurs.
See Chapter 12 of Docknet et al. (2000).

13It is possible to prove a result closely related to Proposition 1, which asserts that an increase in c
reduces welfare, i.e., dU/dc < 0. While detailed calculations are omitted, the final outcome is

dU

dc
=
−n{(m+ n)2(2m+ 2n+ 1)a− [2m3 + 2(3n+ 2)m2 + (6n2 + 5n+ 2)m+ n2(2n+ 1)

]
c
}

(m+ n)3(m+ n+ 1)2
< 0.

A rise in c directly yields a larger market share of efficient firms but lowers welfare. This parallels
Proposition 1.

14As shown in Benchekroun (2003, 2008) in a context of symmetric oligopoly, the steady state associ-
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Proposition 2. If static Cournot outputs were to be chosen, an increase in the number

of efficient firms raises steady state welfare.

Proof. See Appendix C.

This result clearly convinces us that a result parallel to Proposition 1 would no longer

be the case if static outputs were to be chosen. This is because static outputs have no

closed-loop property, i.e., no firm adjusts output to a change in S. In this case, only

the static effect prevails and thus increasing the number of efficient firms unambiguously

improves welfare.

5 Concluding remarks

Extending Benchekroun’s (2008) model of a productive asset oligopoly to an asymmetric

oligopoly, we have proved that ‘helping major firms reduces welfare.’ This yields a natural

corollary that ‘helping any firm reduces welfare.’ These results have theoretically and

practically important implications. From a theoretical point of view, there does exist a

case in which predictions of the static theory are completely reversed. In our context,

the adverse effect through the closed-loop property of feedback strategies dominates the

favorable effect coming from the static effect.

On the other hand, our results cast a serious doubt on practical competition policies.

It has been tacitly believed that increasing the number of efficient firms is always welfare-

improving. However, we have demonstrated that such recognition is too hasty. If we

allow for intertemporal interactions among firms, reducing the number of firms can be

beneficial.

Nonetheless, we have admittedly rested on numerous simplifying assumptions some

of which are stricter than Benchekroun (2008) and Lohoues (2006). For instance, (i)

dynamics of the resource is linearly increasing, (ii) the analysis is restricted to steady

states and (iii) the resource is open access and is not private. While this paper has not

ated with static Cournot outputs is asymptotically unstable, which is also true of our model.
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pursued generality, it is our future research agenda to explore the validity and generality

of our results by relaxing these assumptions.

Appendix A. Feedback strategies through the guessing

method

While the main text employs the Tsutsui-Mino-Shimomura approach, this appendix de-

rives the feedback strategy by assuming quadratic value functions. Maximizing the right-

hand side of firm i’s HJB equation with respect to xi and using the symmetry in each

group of firms, we obtain the first-order condition of efficient firms:

a− (m+ 1)xi − nxj − V ′i (S) = 0. (23)

Inefficient firms’ counterpart is

a− c−mxi − (n+ 1)xj − V ′j (S) = 0. (24)

From (23) and (24), feedback strategies are solved as

xi(S) =
a+ nc− (n+ 1)V ′i (S) + nV ′j (S)

m+ n+ 1

xj(S) =
a− (m+ 1)c+mV ′i (S)− (m+ 1)V ′j (S)

m+ n+ 1
.

Supposing that each firm’s value function is quadratic in S so that Vi(S) = AiS
2/2+BiS+

Ci and Vj(S) = AjS
2/2 + BjS + Cj, we have V ′i (S) = AiS + Bi and V ′j (S) = AjS + Bj,

and (23) and (24) become

xi(S) =
[−(n+ 1)Ai + nAj]S − (n+ 1)Bi + nBj + a+ nc

m+ n+ 1
(25)

xj(S) =
[mAi − (m+ 1)Aj]S +mBi − (m+ 1)Bj + a− (m+ 1)c

m+ n+ 1
. (26)

Substituting these into the original HJB equations, we have an identity of efficient firms

r
(
Ai
2
S2 +BiS + Ci

)

=

[
a+

(mAi + nAj)S +mBi + nBj − (m+ n)a+ nc

m+ n+ 1

]
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× [−(n+ 1)Ai + nAj]S − (n+ 1)Bi + nBj + a+ nc

m+ n+ 1

+(AiS +Bi)

[
kS +

(mAi + nAj)S +mBi + nBj − (m+ n)a+ nc

m+ n+ 1

]
,

and of inefficient firms

r
(
Aj
2
S2 +BjS + Cj

)

=

[
a− c+

(mAi + nAj)S +mBi + nBj − (m+ n)a+ nc

m+ n+ 1

]

× [mAi − (m+ 1)Aj]S +mBi − (m+ 1)Bj + a− (m+ 1)c

m+ n+ 1

+(AjS +Bj)

[
kS +

(mAi + nAj)S +mBi + nBj − (m+ n)a+ nc

m+ n+ 1

]
.

Equating the terms multiplied by S2 in both sides of these identities, we can get

Ai = Aj = A = 0,−(2k − r)(m+ n+ 1)2/2(m+ n)2 < 0. Analogously, Bi and Bj satisfy

the system of equations

[
2m(m+ n)A+ (k − r)(m+ n+ 1)2 2n(m+ n)A

2m(m+ n)A 2n(m+ n)A+ (k − r)(m+ n+ 1)2

] [
Bi

Bj

]

=

[
[(m+ n)2 + 1] a− 2n(m+ n)c

[(m+ n)2 + 1] a+ (m2 − n2 − 1)c

]
A.

by equating the terms multiplied by S to zero. Finally, Ci and Cj are obtained from the

constant terms in the HJB equations. Substituting these back into (25) and (26), feedback

strategies are derived as in (15) and (16). Note that Ai = Aj = A = 0 corresponds to

the static Cournot-Nash outputs.

Appendix B. Proof of Proposition 1

Differentiating (18) with respect to m, we have

dU

dm
= k(a− kS)

dS

dm
− ncdxj

dm
. (27)

The steady state in which Ṡ = kS −m(αS + βi)− n(αS + βj) = 0 involves

S =
mβi + nβj

k − (m+ n)α
. (28)
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Substituting this into xj(S) = αS + βj, an inefficient firm’s steady state output is

xj = αS + βj = α · mβi + nβj
k − (m+ n)α

+ βj =
mα(βi − βj) + kβj
k − (m+ n)α

. (29)

Substituting (12)-(14) into (28) and (29), the closed-form of S and xj in the steady state

is

SE =
(m+ n)a− nc

k(m+ n)(m+ n+ 1)
(30)

xEj =
(m+ n)2a− [m+ (m+ n)2] c

(m+ n)3(m+ n+ 1)
,

where superscript E denotes the Nash equilibrium.

Thus, differentiating these with respect to m yields

dSE

dm
=
−(m+ n)2a+ n(2m+ 2n+ 1)c

k(m+ n)2(m+ n+ 1)2
< 0

dxEj
dm

=
−(m+ n)2(2m+ 2n+ 1)a+ [2(m+ n)3 + (4m− 1)(m+ n) + 3m] c

(m+ n)4(m+ n+ 1)2
< 0.

Applying these results to (27), rearranging terms and defining N ≡ m + n, dU/dm

becomes

dU

dm
=

Γ

kN4(N + 1)3

Γ = −N5a2 +N2n
[
2N2 + k(N + 1)(2N + 1)

]
ac

+n
{
N(2N + 1)n− k(N + 1)

[
2N3 + (4m− 1)N + 3m

]}
c2 < 0.

Consequently, we have concluded that dU/dm < 0.

Appendix C. Proof of Proposition 2

It is convenient to slightly rewrite (18) as follows.

U =
X(2a−X)

2
− ncxj,

where X ≡ mxi + nxj. Therefore, a change in m induces

dU

dm
= (a−X)

dX

dm
− ncdxj

dm
. (31)
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Static Cournot-Nash outcomes give

X =
(m+ n)a− nc
m+ n+ 1

, xj =
a− (m+ 1)c

m+ n+ 1
dX

dm
=

a+ nc

(m+ n+ 1)2
,

dxj
dm

=
−a− nc

(m+ n+ 1)2
.

Substituting these into (31), a welfare change associated with a change in m is

dU

dm
=

[a+ n(m+ n+ 2)c](a+ nc)

(m+ n+ 1)2
> 0,

that is, increasing the number of efficient firms benefits welfare.
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m ↑

X ↑

S ↓

p ↓

CS ↑

aggregate profits ↓

xi, xj ↓ S ↑

static effect

closed-loop effect

Figure 1: Effects of an increase in m
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