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Abstract

In some classes of macroeconomic models with financial frictions, an adverse financial

shock successfully explains a decrease in real activity but simultaneously induces a stock

price boom. The latter theoretical result is not consistent with data from actual financial

crises. This study aims to provide a theoretical explanation for both prolonged recessions

and stock price declines. I develop a simple macroeconomic model featuring a banking sector,

financial frictions, and R&D-based endogenous growth. Both the analytical and numerical

investigations show that endogenous R&D investment and a shock hindering banks’ financial

intermediary function can be key to generating both a prolonged recession and a drop in firms’

stock prices.
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1 Introduction

Although macroeconomic models with financial frictions were major workhorses in business cycle

studies even before the 2008–2009 global financial crisis, most of them focused on the role of

financial frictions only in propagating and amplifying shocks originating in firms’ productivity,

households’ preferences, or economic policies. After the crisis, some studies shed light on the

shocks affecting agents’ ability to borrow as a key influence on business cycles. Shocks to financial

constraints are referred to as “financial shocks,” of which there are two main classes: a credit

crunch that affects agents’ borrowing capacity (Jermann and Quadrini, 2012; Kahn and Thomas,

2013; Buera and Moll, 2015); and a liquidity shortage that affects agents’ ability to issue and

resell equity (Shi, 2015; Kiyotaki and Moore, 2019). These theoretical studies show that adverse

financial shocks induce a fall in GDP, aggregate consumption, investment, and employment.

Despite their successful explanation of realistic co-movements among major macroeconomic

variables, some researchers have criticized these models. In particular, Shi (2015) points out that

an adverse financial shock in such models, be it a credit crunch or a liquidity shortage, induces

a rise in stock prices. Obviously, this theoretical prediction is not consistent with observations;

instead, the opposite is true. Figure 1 plots the movements of the GDP per capita and stock

prices in the U.S. before and after the 2008–2009 financial crisis.1 As this figure shows, their

movements are quite synchronized. As Shi (2015) notes, this problem is important and must

be addressed, because a fall in stock prices is thought to be the prime transmission channel of

financial shocks to the aggregate economy.

How can we resolve this problem? Several studies have addressed this issue. Among others,

using numerical analysis, Guerron-Quintana and Jinnai (2022) show that connecting a financial

shock and endogenous growth can resolve the problem of the counterfactual stock price movement.

They build on Shi (2015) and Kiyotaki and Moore (2019). Household members are classified into

workers and entrepreneurs who accumulate physical capital through investment. Entrepreneurs

can sell their own capital to finance investments, but there is an upper limit to the amount of

capital that can be sold in one period. This creates a liquidity constraint for entrepreneurs, which

in turn generates an upper limit on the amount of investments.

In their model, a negative financial shock is formulated so that the liquidity constraint becomes

tighter and entrepreneurs become more cash-strapped. Because of such a shock, entrepreneurs’

1The quarterly data on the GDP per capita (2015 constant dollars, 2004Q1–2019Q4) is provided in the OECD.

Stat (https://stats.oecd.org/). Historical data on the S&P 500 is available from several sources, e.g., Yahoo Finance

(https://finance.yahoo.com/quote/%5EGSPC/history/). The stock prices are converted from monthly to quarterly

data by taking the three-month average. For both the GDP per capita and stock prices, the value in the first quarter

of 2008 is normalized to 100.
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Figure 1: GDP per capita and the stock prices in the U.S.

capital investment decreases. This itself has the effect of raising the stock price of capital.2 How-

ever, if technological progress is determined by learning-by-doing externalities à la Romer (1986),

i.e., labor productivity improves as the capital stock increases, then a decline in investment also

has the additional effect of a subsequent deterioration in labor productivity. This deterioration

in future productivity is then reflected in stock prices at the time of the shock, and thus the

financial shock causes a decline in stock prices. By using an endogenous growth model, they

also succeeded in providing a theoretical explanation for why temporary negative financial shocks

have lasting effects on the real economy.

However, the relationship between financial shocks and stock prices still needs to be ana-

lyzed for the following two reasons. First, Guerron-Quintana and Jinnai (2022) do not explicitly

introduce a financial intermediary sector, such as banks, into their model. As seen with the

bankruptcy of Lehman Brothers, the event triggering the financial crisis is often a negative shock

to the banking sector. Therefore, it is important to introduce banks explicitly into the model and

then analyze the stock price reaction to shocks affecting the banking sector. Second, they employ

learning-by-doing externalities as the mechanism for endogenous growth. Indeed, by doing so

they succeed in making the model concise. However, firms’ R&D activities are thought to be

the main source of economic growth, as first stressed by Romer (1990), Grossman and Helpman

(1991a), Aghion and Howitt (1992), and so on. Although Guerron-Quintana and Jinnai (2022)

note that their results would be robust to the use of R&D-based endogenous growth models, they

did not conduct this type of analysis. Therefore, the mechanism of how financial shocks affect

R&D activities remains unclear. Figure 2 illustrates how R&D spending in the U.S. has evolved

2In fact, they show that if firms’ labor productivity is determined by exogenous technological progress, then a

negative financial shock would lead to an increase in stock prices, as in the previous studies.
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Figure 2: R&D spending in the U.S.

over time.3 Over the ten years from 1998 to 2008, R&D spending grew at an annual rate of 3.6%.

In this figure, the dashed line represents the counterfactual amount of spending if this growth

rate had continued after 2008. As can be seen from this figure, R&D spending was below this

counterfactual trend after 2008 until it recovered in 2021. Thus, the financial crisis has had a

negative impact on R&D investment, and it is important to explicitly incorporate R&D activities

into the model.

Against this background, this study examines the impacts of financial shocks to the banking

sector on stock prices and the real economy by incorporating the banking sector into an R&D-

based endogenous growth model. I formulate the banking sector in the same way as Gertler et al.

(2020).4 I mainly consider the quality-ladder developed by Grossman and Helpman (1991a) and

Grossman and Helpman (1991b, Ch.4) as the mechanism for endogenous growth. In the model,

households make deposits, entrant firms issue equities to conduct R&D activities, and banks

intermediate financial funds between them. This study adopts the following two key features

of banks in Gertler et al. (2020). First, although the households can purchase equities directly,

banks are more efficient in doing so. Specifically, there is a utility cost for the households directly

holding equities. Second, each bank has an incentive to divert its assets for its own use. This

potential moral hazard leads to a situation in which the banks’ capacity to collect deposits is

limited, and they face an upper bound of their leverage ratio. Based on the presence of this

upper bound, in equilibrium, both households and banks purchase equities.

In the present model, a negative financial shock is formulated so that the moral hazard

3The annual data of the gross domestic spending on R&D (2015 constant dollars, 1998–2021) are provided in

the OECD. Stat (https://stats.oecd.org/). The value in 2008 is normalized to 100.

4Gertler and Karadi (2015) and Gertler and Kiyotaki (2015) also introduce the banking sector to their models

in the same way.
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problem becomes more serious and the banks’ leverage ratio decreases. Within this framework,

I analytically examine the long-run effects of this financial shock when it is permanent and

numerically investigate the short-run and long-run effects when it is temporary. 5 In both cases,

it is shown that such a shock causes both a prolonged downward shift in real activity and a sharp

decline in stock prices. The mechanism generating this result is simple and can be explained

as follows. After the shock, banks face more difficulty financing their equity investments with

external funds due to a reduction in their leverage ratio. Banks are, however, better at equity

investment. In such a case, the household is burdened by managing more firms, and, therefore,

demands a high premium to hold additional equities. This is achieved through a decrease in

stock acquisition costs, that is, a reduction in stock price. The decline in stock prices then makes

innovation less profitable for entrants, which in turn reduces R&D activities in the economy as

a whole. In the endogenous growth model, R&D is the key determinant of the growth rate (i.e.,

future levels) of real variables. Thus, even if the financial shock is temporary and the resulting

decline in R&D is also temporary, it will have a lasting negative impact on the level of real

variables. As I have explained, the mechanism that generates this result is quite different from

that in Guerron-Quintana and Jinnai (2022). In this sense, this study complements their analysis.

This study is related to several previous studies in addition to the literature cited so far.

Ajello (2016) and Del Negro et al. (2017) incorporate both nominal price and wage rigidities into

the model of Kiyotaki and Moore (2019) and argue that such nominal frictions are important

to overcoming the problem of counterfactual stock price response. By contrast, this study does

not require such rigidities. I believe that the solution they propose and the one presented in this

study are complementary to each other. Because of its simplicity, the proposed mechanism in

this study could easily be incorporated into their model. This study is also related to the liter-

ature linking business cycles to economic growth, such as Comin and Gertler (2006), Kobayashi

and Shirai (2018), Bianchi et al. (2019), Guerron-Quintana and Jinnai (2019), and Ikeda and

Kurozumi (2019), in the sense that they pursue business cycle implications in an R&D-based

endogenous growth model. They build on quantitative dynamic stochastic general equilibrium

(DSGE) models and explore the impacts of several economic shocks on the economy. By com-

parison, the goal of this study is to develop a tractable macroeconomic model and examine the

relationships among financial shocks, R&D investments, and firms’ stock prices. One strength of

the model proposed here is its tractability, which allows us to easily characterize the equilibrium

and conduct comparative statics. The tractability can provide insight into the inner workings of

the model when considering the effects of financial shocks.

The rest of this paper is organized as follows. Section 2 sets up the model. Section 3 analyti-

5Here, the long-run effects refer to the effects on variables on the balanced growth path, while the short-run

effects refer to the effects on those during the transition process to the balanced growth path.
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cally characterizes the equilibrium and provides the comparative statics. Section 4 presents the

numerical results of a transitory financial shock to banks. Section 5 provides further discussion.

Section 6 concludes the paper.

2 Model

Time is discrete and extends from zero to infinity (t = 0, 1, 2, . . . ). The supply side is a discrete-

time version of a quality-ladder growth model developed by Grossman and Helpman (1991a) and

Grossman and Helpman (1991b, Ch.4).6 The economy has a single final good used for consump-

tion. There is one primary factor, labor, which is used for production of intermediate goods

and R&D activities. Households save their income in the form of deposits at banks and direct

claims on equities; however, they are less efficient in the direct claims than are banks. The banks

intermediate funds between the households and the firms.

2.1 Firms

Final good sector. The final good is a composite of differentiated intermediate goods indexed

by ω ∈ [0, 1]. The production technology is given by

Yt = Zt exp

[∫ 1

0
ln
(
λKt(ω)xt(ω)

)
dω

]
,

where Yt is the output of the final good, xt(ω) is the demand for variety ω, Kt(ω)(= 1, 2, . . .)

represents the highest quality of variety ω in period t, and λ > 1 represents the size of the

quality improvement achieved by an innovation. Without loss of generality, I assume the initial

condition K0(ω) = 1 for all ω. Then, Kt(ω)−1 is the number of occurrences of quality-upgrading

innovations for ω before period t. The term Zt is the exogenous technology level, growing at a

constant rate of gZ > 0. Even if this term were not present, the qualitative results would not

change at all. I introduce the term Zt to capture the fact that there are other contributing factors

to productivity growth in addition to R&D activities.7

Following Grossman and Helpman (1991b, Ch.4), I take the final expenditure as the numeraire:

PtYt = 1, where Pt is the price of the final good. Thus, in this model, all prices are evaluated

in terms of the final expenditure. Let pt(ω) denote the price of variety ω. Profit maximization

6In Section 5, I formulate a variety-expansion model and verify that the main results obtained in the quality-

ladder model are robust.

7There is debate regarding the degree to which R&D investment contributes to productivity growth. Comin

(2004), for example, argues that the contribution of R&D investment to technological progress is not large. Never-

theless, I employ the R&D-based endogenous growth model as the framework of analysis because of the fact that

R&D investment significantly fell after the financial crisis, as shown in Figure 2.
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yields the demand function for variety ω: xt(ω) = 1/pt(ω), and the zero-profit condition:

Pt =
1

Zt
exp

[∫ 1

0
ln

(
pt(ω)

λKt(ω)

)
dω

]
. (1)

Intermediate good sector. Producing xt(ω) units requires the same units of labor as inputs,

implying that the wage rate Wt is the unit cost of production. As in Grossman and Helpman

(1991a) and Grossman and Helpman (1991b, Ch.4), each variety has several potential suppliers

that can produce the good with a quality of less than Kt(ω). The leader firm determines its price

as pt(ω) = λWt to monopolize the market and it sells xt(ω) = 1/(λWt) units of the good. The

resulting profit is πt(ω) = π ≡ 1− 1/λ.

Let Qt denote the end-of-period stock price of the leader firm. Here, “end-of-period” has two

meanings. First, Qt is ex-dividend, that is, Qt is evaluated after the dividend in period t has

been paid. Second, Qt is evaluated after it turns out that the innovation did not occur in period

t.8 Let Re
t+1 denote the one-period gross rate of return from holding the equity from the end of

period t to t+ 1.

Re
t+1 ≡

π + (1− It+1)Qt+1

Qt
, (2)

where It+1 ∈ [0, 1] denotes the probability that an innovation by potential entrants succeeds

in period t + 1 and the current leader loses its market power. It is determined endogenously

from the resource constraint in this economy. As in the literature on quality-ladder growth, It

is independent and identically distributed (i.i.d.) across varieties. Then, from the law of large

numbers, It is equal to the ex-post measure of varieties in which innovation occurs.

If each potential entrant hires κIt units of labor in period t, then it can succeed in innovation

with probability It, where κ > 1 is the labor requirement to obtain 100% success in innovation.

If the innovation succeeds, then the entrant becomes the new leader firm for one variety from

period t+1. Consequently, the new leader faces the idiosyncratic risk of the next innovation and

other aggregate risks. Therefore, the expected benefit of innovation in period t is given by ItQt.

Then, the free-entry condition of R&D activities for a variety is Qt ≤Wtκ, the equality of which

holds if It > 0, that is, R&D is conducted. Throughout this study, I focus on the equilibrium

with It > 0.

Qt =Wtκ. (3)

8The results obtained in this study do not change if the stock price is defined at the beginning of a period. Let

Q̃t denote the stock price evaluated at the beginning of period t. Then, Q̃t and Re
t+1 must satisfy

Q̃t = π + (1− It)
Q̃t+1

Re
t+1

.

Because of Q̃t+1/R
e
t+1 = Qt, it follows that R

e
tQt−1 = π+(1− It)Qt, which is essentially the same as equation (2).
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2.2 Households

I formulate this sector in a similar way as Gertler et al. (2020). There is a continuum of households,

and each household in turn consists of a continuum of family members with measure 1 + f > 0,

where f ∈ (0, 1) is constant. Within a household, members are classified into workers and bankers.

The measure of workers is 1, while that of bankers is f . I normalize the measure of households

to 1 so that the total population is constant at 1+ f .9 Each worker supplies labor to earn wages,

and each banker manages a bank. The detail of the bankers’ behavior is explained in Section 2.3.

As seen in Section 2.1, the measure of profit-earning intermediate good firms is unity. Let Sh
t

be the number of firms whose equities are held directly by the households and Sb
t be the number

of firms whose equities are intermediated by the bankers. Then,

Sh
t + Sb

t = 1.

Within the household, the members consume the same amount of the final good. Let Ct

denote the amount of aggregate real consumption. Each member consumes Ct/(1 + f). Each

worker is endowed with one unit of time. Since the population of workers is normalized to 1, Lt

also represents the total labor supply. The representative household’s utility is given by10

E0

{ ∞∑
t=0

βt
[
lnCt + ζ ln(1− Lt)− Γ(Sh

t )
]}

,

where β ∈ (0, 1) is the discount factor, ζ > 0 is the weight of the utility from leisure, and

Et(·) is the expectation operator conditioned on the information available in period t. Function

Γ represents the disutility from the household’s direct equity holding. Following Gertler et al.

(2020), I introduce this disutility function to simply capture the household’s lower efficiency in

handling equity investments compared to banks.11 I assume that function Γ satisfies

Γ′(Sh) > 0,Γ′′(Sh) > 0 for Sh > 0,Γ′(0) = 0.

By the law of large numbers, the fraction It of the leader firms are leapfrogged at the end of

period t; the stock price of these firms then becomes zero. As in the existing studies employing

9Gertler et al. (2020) assume that within the family there are 1 − f workers and f bankers. Although I can

also apply such an assumption in this study, I normalize the measure of workers to 1 because it simplifies the

calculations. In these studies as well as the present research, f does not have an important influence on the main

results.

10It would be natural for households to obtain utility from per capita consumption Ct/(1+ f). However, thanks

to the assumption of a logarithmic utility function, this is essentially the same as the assumption that utility is

obtained from total consumption Ct.

11In Section 5, I examine a case in which the households’ direct equity purchasing requires the final good as the

transaction costs. The main results are qualitatively robust even in this case, with a few additional assumptions.
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the quality-ladder growth model, I assume that the household can diversify equity investments.

Thus, the households are not exposed to any risk other than the aggregate financial shocks that

we will see in Section 2.3. Therefore, the budget constraint is given by12

Rd
tDt−1 +Re

tQt−1S
h
t−1 +WtLt +Πbank

t − Tt = PtCt +Dt +QtS
h
t ,

where Dt represents deposits, R
d
t is the gross rate of return on the deposits, Tt represents lump-

sum taxes, and Πbank
t shows the transfers from bankers; how Πbank

t is determined is explained in

Section 2.3.

The household chooses Ct, Lt, S
h
t , and Dt to maximize the utility subject to the budget con-

straint. The conditions for utility maximization are given by

ζ

1− Lt
=

Wt

PtCt
,

1

PtCt
= βEt

(
1

Pt+1Ct+1
Rd

t+1

)
,

Γ′(Sh
t )

Qt
+

1

PtCt
= βEt

(
1

Pt+1Ct+1
Re

t+1

)
.

Since the market equilibrium of the final good implies PtCt = PtYt(= 1), these conditions can be

rewritten as

Lt = 1− ζ

Wt
, (4)

EtR
d
t+1 =

1

β
, (5)

Et

(
Re

t+1 −Rd
t+1

)
=

Γ′(Sh
t )

βQt
. (6)

2.3 Banks

Each banker manages a bank. Hereafter, I use bankers and banks interchangeably. The aggre-

gate net revenue of bankers in period t is given by Re
tQt−1S

b
t−1 − Rd

tDt−1. At the end of each

period, each banker faces an idiosyncratic risk of exit that occurs with probability 1 − δ ∈ (0, 1).

Throughout this study, I assume the following inequality:

Assumption 1. δ < β.

Each bank, if it is hit by the exit shock, gives its net revenue to the household. Since the exit

probability is i.i.d. across bankers, the 1 − δ share of the aggregate net revenue is transferred to

the household:

Πbank
t = (1− δ)(Re

tQt−1S
b
t−1 −Rd

tDt−1).

12The budget constraint is given by Rd
tDt−1 + πSh

t +WtLt + Πbank
t − Tt = PtCt +Dt +Qt[S

h
t − (1− It)S

h
t−1],

where πSh
t on the left-hand side shows the dividends from the intermediate goods firms and Sh

t − (1− It)S
h
t−1 on

the right-hand side shows the additional purchase of their shares. Using the definition of Re
t , we can obtain the

budget constraint stated above.
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After exiting, a banker becomes a worker starting in the next period. To keep the populations

of both workers and bankers constant over time, the workers with mass (1 − δ)f ∈ (0, 1) are

randomly chosen at the end of each period to act as bankers starting in the next period.

Consider a bank with its net revenue given by nt = Re
tQt−1s

b
t−1 − Rd

t dt−1, where s
b
t−1 is the

measure of firms purchased by this bank and dt−1 is the issued deposits. If this bank is not hit by

the exit shock, it then finances equity purchases Qts
b
t with this revenue and newly issued deposits:

Qts
b
t = nt + dt. (7)

Then, this bank’s net revenue in period t+1 is given by nt+1 = Re
t+1Qts

b
t −Rd

t+1dt. Note that (7)

represents the banker’s balance sheet and nt corresponds to the banker’s net worth. Henceforth,

I simply call nt net worth. In Appendix A.1, it is shown that the banker’s objective function is

given by

Ṽt ≡ Et


∞∑
j=1

βj(1− δ)δj−1nt+j

 .

The term (1−δ)δj−1 is the conditional probability of exit in period t+j given that the bank does

not exit in period t. Let Vt(nt) ≡ max Ṽt denote the value function. The banker’s optimization

problem is written as the Bellman equation:

Vt(nt) = max
sbt ,dt

Et {β [(1− δ)nt+1 + δVt+1(nt+1)]} .

The bank faces the balance sheet condition (7) and the following constraint:

Ṽt ≥ θtQts
b
t , (8)

which comes from the potential moral hazard problem. After buying equities, the bank has the

following two options. One is to hold the assets, receive dividends, and then meet its deposit

obligations in period t+1. The other is to secretly sell the assets to obtain the funds for its own

use. To remain undetected, the bank can sell only up to fraction θt of the assets. Inequality (8)

is a constraint in which the bank has no incentive to choose the latter option. In this model, a

change in θt generates a financial shock. θt changes according to

ln(θt+1/θ) = ρ ln(θt/θ) + εt+1,

where θ is the baseline value of θt, εt is an i.i.d. shock, and ρ ∈ (0, 1) is the parameter specifying

the persistence of shocks.

To solve the problem, we can use the guess and verify method. Guess Vt(nt) as a linear

function of nt: Vt(nt) = ψtnt. The Bellman equation is rewritten as

ψtnt = Et

{
β(1− δ + δψt+1)max

sbt

[
Rd

t+1nt +
(
Re

t+1 −Rd
t+1

)
Qts

b
t

]}
,
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subject to ψtnt ≥ θtQts
b
t . Then, as long as Re

t+1 −Rd
t+1 > 0, the bank invests as much as it can:

Qts
b
t =

ψtnt
θt

. (9)

Substituting this result into the Bellman equation yields the dynamic equation of ψt:

ψt =
βEt

[
(1− δ + δψt+1)R

d
t+1

]{
1− β

θt
Et

[
(1− δ + δψt+1)

(
Re

t+1 −Rd
t+1

)]} . (10)

The denominator is assumed to be positive:

Assumption 2. θt > βEt

[
(1− δ + δψt+1)

(
Re

t+1 −Rd
t+1

)]
.

Consider a banker that newly enters the market. Let et denote the new banker’s initial net

worth and assume that this is fully subsidized by the government. The new banker’s behavior is

then given by (7) and (9), with nt replaced by et. The same equation as (10) is then implied for

the new banker. Let N denote the aggregate net worth of banks. To obtain the equilibrium of

the model, I assume that the subsidies to each new banker are proportional to the average net

worth in the previous period. Since the measure of bankers is always f ,

et = µNt−1/f,

where I assume that µ > 0 is not so large:

Assumption 3. µ < β−δ
β(1−δ)(< 1).

This assumption is required to obtain the uniqueness of the equilibrium. Nt is then given by

the sum of the incumbent banks’ net worth as well as that of the new entrants:

Nt = δ(Re
tQt−1S

b
t−1 −Rd

tDt−1) + (1− δ)µNt−1.

Since each bank’s decision about equity holding Qts
b
t is linear in its state variable nt or et, these

decisions are easily aggregated over all banks. Given Nt, QtS
b
t is given by

QtS
b
t =

ψtNt

θt
.

Thus, ψt/θt represents the banks’ leverage.

2.4 Government

The government’s budget constraint is given by

Tt = (1− δ)µNt−1,

from which Tt is determined.
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2.5 Market-clearing conditions

The timing of events during a given period is summarized as follows.

1. Aggregate financial shocks are realized. The workers determine their labor supply, the

final and intermediate good firms produce the goods, and the intermediate good firms pay

dividends to the equity owners.

2. The outcomes of R&D are realized. By the law of large numbers, the fraction It of the leader

firms are leapfrogged and the stock price of these firms becomes zero. Since the shareholders

have diversified equity investments, their total values of equity change from Qt−1S
h(b)
t−1 to

Qt(1− It)S
h(b)
t−1 . Their gross interest income from holding equities is π +Qt(1− It)S

h(b)
t−1 =

Re
tQt−1S

h(b)
t−1 . In this stage, the households also obtain the gross interest income from their

deposits, Rd
tDt−1.

3. Each bank exits in this stage with an i.i.d. probability of 1 − δ ∈ (0, 1). Upon exit, the

profits of such banks, Πbank
t , is transferred to the households. The workers with mass (1−δ)f

become new bankers and enter the financial market with their initial net worth subsidized

by the government. The households pay the lump-sum taxes Tt to the government.

4. The asset markets open. The households consume the final good and determine their

portfolios, QtS
h
t and Dt, respectively. The bankers buy the equities QtS

b
t .

The market-clearing condition for the final good is Yt = Ct = 1/Pt. The labor market clears

as

Lt =
1

λWt
+ κIt. (11)

The market-clearing condition of equities is Sh
t + Sb

t = 1. Finally, the deposits Dt must satisfy

Dt +Nt = QtS
b
t . (12)

From these market-clearing conditions, together with the agents’ behavior, the household’s budget

constraint is automatically satisfied from Walras’ law.

3 Equilibrium in the deterministic economy

This section analytically characterizes the equilibrium in the case of no aggregate risks by assum-

ing εt = 0 (i.e., θt = θ) for all t. In this case, (5) and (6) are respectively reduced to

Rd
t+1 = 1/β, (13)

Re
t+1 =

1

β

(
1 +

Γ′(Sh
t )

Qt

)
. (14)
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3.1 Equilibrium conditions

This subsection derives key equations in characterizing the equilibrium. Substituting (13) and

(14) into (10) without the expectation operator yields

ψt = (1− δ + δψt+1)

(
1 +

ψt

θ

Γ′(Sh
t )

Qt

)
. (15)

Substituting (12)–(14) and QtS
b
t = ψtNt/θ into the banks’ aggregate net worth in period t + 1,

we can obtain the dynamic equation of Nt as follows:

Nt+1 =

[
δ

β

(
1 +

ψt

θ

Γ′(Sh
t )

Qt

)
+ (1− δ)µ

]
Nt. (16)

Substituting (3) and (4) into the labor market equilibrium (11) and evaluating the resulting

equation in period t+ 1,

It+1 =
1

κ
− 1 + λζ

λ

1

Qt+1
. (17)

Substituting (14) and (17) into (2), we can obtain the dynamic equation of Qt as follows:

Qt = β(1− 1/κ)Qt+1 + β(1 + ζ)− Γ′(Sh
t ). (18)

Equations (15), (16), and (18) include Sh
t . Since S

h
t + Sb = 1, Sh

t is given by the functions of ψt,

Nt, and Qt:

Sh
t = 1− ψtNt

θQt
. (19)

Thus, the autonomous dynamical system in the deterministic economy is given by (15), (16), and

(18) together with (19). Note that Nt is a state variable, whereas ψt and Qt are forward-looking

variables whose initial values are determined endogenously.

3.2 Balanced growth path

In this section, I examine the equilibrium where Qt, ψt, Nt, S
h
t , and It become stationary. I call

such an equilibrium the balanced growth path (BGP) equilibrium, since in that case consumption

grows at a constant rate as shown below.

Equation (16) with Nt = Nt+1 implies

1 +
ψ

θ

Γ′(Sh)

Q
= B∗, (20)

where

B∗ ≡ β[1− (1− δ)µ]

δ
> 1.

Note that B∗ depends only on the exogenous parameters and Assumption 3 ensures B∗ > 1.

Hereafter, a superscript asterisk over a variable represents its stationary value. For example, ψ∗

denotes the stationary value of ψ. Equation (15) with ψt = ψt+1 provides ψ∗:

ψ∗ =
(1− δ)B∗

1− δB∗ > 0.

13



Figure 3: Determination of Sh∗ and Q∗

Substituting the obtained ψ∗ back into equation (20) yields the following relationship between

the stock price Q and the households’ equity purchases Sh:

Q =
δψ∗

[β − δ − β(1− δ)µ] θ
Γ′(Sh), (21)

where the sign of the denominator is positive from Assumption 3. Since Γ′′(Sh) > 0 for Sh > 0,

this equation shows a positive relationship between q and Sh. The intuition is explained as follows.

When Sh becomes larger, households become more reluctant to hold equities directly unless their

rate of return becomes sufficiently higher. Indeed, Re − Rd = Γ′(Sh)/(βQ) experiences upward

pressure. This upward pressure in turn has a positive impact on the banks’ aggregate net worth

N , and hence, they want to purchase more of these equities. In the stationary equilibrium in

which N is constant, such an increase in their equity demand puts upward pressure on the stock

price Q. As equation (20) shows, the upward pressure on Sh is offset by a rise in Q such that

Re −Rd remains constant.

There is the other relationship between q and Sh. From (18) with Qt = Qt+1, we can obtain

Q =
β(1 + ζ)− Γ′(Sh)

1− β(1− 1/κ)
, (22)

where the sign of the denominator is positive. Since Γ′′(Sh) > 0 for Sh > 0, this equation shows

a negative relationship between q and Sh. The intuition is straightforward. The increase in

Sh makes households less willing to hold equities unless their rate of return becomes sufficiently

higher. Therefore, this unwillingness depresses the unit cost of the equity purchase, which is Q.

In Figure 3, the upward- and downward-sloping curves represent equations (21) and (22),

respectively. These two curves have only one intersection. Q∗ is explicitly obtained as

Q∗ =
β(1 + ζ)δψ∗

[1− β(1− 1/κ)]δψ∗ + [β − δ − β(1− δ)µ]θ
.

14



By its definition, Sh∗ must be in (0, 1). Since I assume Γ′(0) = 0, the value of Q in (21) is

necessarily smaller than Q in (22) for Sh = 0. Thus, Sh∗ > 0 is guaranteed. Throughout this

study, I also assume that Sh∗ < 1 is satisfied, and hence, equity holdings are diversified between

banks and households. For example, given Q∗, Sh∗ < 1 is satisfied if

Γ′(1) >
Q∗

δψ∗ [β − δ − β(1− δ)µ]θ. (23)

Substituting Qt+1 = Q∗ into (17) yields I∗:

I∗ =
1

κ
− 1 + λζ

λQ∗ . (24)

By its definition, I∗ must be in (0, 1). Note that I∗ < 1 is guaranteed because of κ > 1. From

(24), I∗ > 0 if and only if

Q∗ >
κ(1 + λζ)

λ
. (25)

The results obtained so far can be summarized as the following Proposition:

Proposition 1. There exists a unique BGP equilibrium with a positive growth rate and diversi-

fication of equity holdings if (23) and (25) are satisfied.

Then, I derive the growth rate of consumption, which always grows at the same rate as the

inverse of the final good price. Since pt(ω) = λWt for all ω, Equation (1) implies

Pt =
Wt

(1 + gZ)tλ
∫ 1
0 (Kt(ω)−1)dω

.

On the BGP, the wage rate is constant at Q∗/κ. Recall that Kt(ω) is the index of highest quality

for variety ω and increases by one for each successful innovation. Thus,
∫ 1
0 (Kt+1(ω)−Kt(ω))dω

is equal to the measure of varieties in which successful innovation occurs in period t. By the law

of large numbers, this is equal to I∗. Therefore, we can obtain

lnP ∗
t+1 − lnP ∗

t = − ln(1 + gZ)− I∗ lnλ,

which implies that the final good price declines over time. Then, the growth rate of consumption

is given by

g∗ = gZ + I∗ lnλ,

where g∗ ≃ ln(1+ g∗) and gZ ≃ ln(1+ gZ) are used. Since the wage rate, stock price, and banks’

net worth become stationary, their real values also grow at the rate of g∗. Therefore, I simply

call g∗ the balanced growth rate.

Finally, we have to check that Assumption 2 is satisfied on the BGP. In this non-stochastic

economy, this assumption is rewritten as

θ > (1− δ + δψt+1)
Γ′(Sh

t )

Qt
.

Since Γ′(Sh∗)/Q∗ = θ(B∗ − 1)/ψ∗ holds from (20) and 1− δ + δψ∗ = ψ∗/B∗ holds from (15), we

can rewrite the inequality above as θ > θ(B∗ − 1)/B∗, which is necessarily satisfied.
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(a) (b)

Figure 4: Comparative statics of the BGP equilibrium

3.3 Comparative statics

Since the model is tractable, we can easily conduct a comparative statics analysis of the BGP

and can gain insight on the inner workings of the model. Suppose that θ increases and, hence,

the banks’ leverage ratio decreases. This decreases the equities held by banks Sb∗. Thus, as

illustrated in panel (a) of Figure 4, an increase in θ shifts the curve representing equation (21)

to the right and increases Sh. However, because of their utility costs, the households are less

efficient at purchasing equities than are banks. Therefore, the households demand a high premium

Re∗−Rd∗ = Γ′(Sh∗)/(βQ∗) to hold additional equities. Consequently, the stock price Q∗ becomes

low in an economy with a large θ.

The decline in Q∗ in turn makes R&D activities less profitable for potential entrants. In fact,

(24) clearly shows that I∗ decreases. Since g∗ = gZ + I∗ lnλ, an increase in θ results in a decrease

in the BGP growth rate. From the above results, we can obtain the following proposition.

Proposition 2. On the BGP, a larger θ results in a lower growth rate, a lower stock price, and

a larger share of households’ equity holdings.

Appendix A.2 provides the results of comparative statics for other variables. It should be

noted here that the result stated in proposition 2 never occurs when R&D costs alone increase.

To understand why, suppose that κ increases. In an economy in which κ is large, it becomes more

costly for a potential entrant to conduct R&D activities. Then, through the entrants’ free-entry

condition, the benefit of R&D must be high. As panel (b) of Figure 4 shows, this induces upward

shifts in the curve representing equation (22). Thus, as shown in the Appendix A.2, in this case,

the stock price rises even though the innovation rate falls.

This section concludes with an analysis of the long-run impact on the banks’ net worth. From

(19), N∗ is given by

N∗ =
θQ∗Sb∗

ψ∗ .
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Suppose that θ increases. From Proposition 2, both Q∗ and Sb∗ = 1 − Sh∗ decrease while ψ∗ is

constant. Simultaneously, an increase in θ has the direct effect of increasing N∗. The reason for

this direct effect is simple: When banks are no longer able to leverage sufficiently, they must have

a higher net worth to purchase equities. Appendix A.2 shows

dN∗

N∗ =
1

1 + a

(
1− Γ′

(1− Sh∗)Γ′′

)
dθ

θ
,

where a ≡ Γ′

β(1+ζ)−Γ′ > 0. Briefly speaking, the first and second terms within the parentheses

correspond to the direct and indirect effects, respectively. The magnitude of the indirect effect

depends on the extent to which Sh∗ and Q∗ decrease, which further depends on the shape of the

cost function of households’ equity holdings. For example, if function Γ(Sh) is specified as

Γ(Sh) =
γ(Sh)1+η

1 + η
,

with η > 0, the elasticity of marginal cost is given by η. dN∗/N∗ is rewritten as

dN∗

N∗ =
1

1 + a

(
1− Sh∗

(1− Sh∗)

1

η

)
dθ

θ
.

If η is small (large), Sh decreases more (less) sharply. Then, given the value of Sh∗ before the

change in θ, the banks’ net worth decreases (increases) when η is small (large). It is worth empha-

sizing, however, that whichever way N∗ changes, the share of banks’ equity holdings invariably

declines and the stock price of intermediate goods firms drops.

4 Numerical analysis of transitory financial shocks

This section now examines how a transitory shock to θt influences the economy in both the short

and the long runs. Hereafter, I specify the disutility function Γ as that in Section 3.3. There

are 10 parameters in the model. Table 1 reports the parameter values chosen in the calibration

exercise. A period in the model corresponds to one quarter of a year. I set the discount factor to

β = 0.99, which is standard in the literature, and set the banks’ survival probability to δ = 0.93,

as in Gertler et al. (2020). I set the degree of quality improvement to λ = 1.15. From the

analytical result in Section 3.3, we can expect different values of η to have different impacts on

the banks’ net worth. Therefore, I consider three cases: a low value (η = 0.8), an intermediate

value (η = 1), and a large value (η = 1.2). In Appendix A.3, it is shown that this variation in η

induces only a variation in γ.

I set the other parameters such that some variables achieve their target values. Appendix A.3

provides the calibration details. I set the growth rate along the BGP to g∗ = 1.021/4− 1 ≃ 0.005.

I set aggregate hours of work to L∗ = 0.3 and the employment share of R&D activities to 7%.

Thus, κI∗ = 0.021. I set the target value of Sh∗ at 0.5 and the spread at Re∗−Rd∗ = 1.021/4− 1.
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Table 1: Parameters

Parameter Value Source/Target

β 0.99 Exogenously chosen

δ 0.93 Exogenously chosen

λ 1.15 Exogenously chosen

η (i)0.8, (ii)1, (iii)1.2 Exogenously chosen

γ (i)0.037, (ii)0.042, (iii)0.049 Sh∗ = 0.5

ζ 2.18 L∗ = 0.3

κ 1.38 κI∗/L∗ = 0.07

gZ 0.0028 g∗ = 1.021/4 − 1

µ 0.206 Re∗ −Rd∗ = 1.021/4 − 1

θ 0.302 Q∗Sb∗/N∗ = 10

Table 2: Balanced growth rate

Variable Value Description

I∗ 0.015 Innovation rate

I∗ lnλ 0.0021 (≃ 0.85% per year) Growth rate by R&D

gZ 0.0028 (≃ 1.15% per year) Growth rate by other factors

Finally, I set the banks’ leverage to Q∗Sb∗/N∗ = 10, as Gertler and Kiyotaki (2015) and Gertler

et al. (2020) also use this value. Table 2 reports the decomposition of the balanced growth rate.

Suppose that the economy is on the BGP in period 0. The objective here is to see if the

mechanisms described in Section 3 work on the entire equilibrium path, not just BGP, rather than

to quantitatively replicate the impact of the financial crisis on the actual economy. Therefore, I

simply formulate the transitory adverse financial shock so that θ1 unanticipatedly increases by

10% relative to its baseline θ. The economy experiences no other shocks and θt gradually recovers

to θ according to ln(θt/θ) = ρ ln(θt−1/θ). The reason for considering such transitory shocks is

to show that even such shocks can have a lasting impact on real activity. Following the existing

studies, I set the persistence of financial shocks at ρ = 0.9. By replacing θ with θt in the dynamical

system (15), (16), (18), and (19) and log-linearizing this system around (ψ∗, N∗, Q∗, Sh∗), we can

compute the impulse response functions of these and other key variables. Appendix A.4 provides

the log-linear approximation of the dynamical system.

Figure 5 illustrates the results. The horizontal and vertical axes, respectively, represent the

period and percentage deviation in levels of the variables from those without the shock. The first

panel shows the financial shock. The second and third panels, respectively, display the impulse

response functions of Sh
t and Qt. As can be seen from these two panels, the directions of the

transitory changes for these two variables are the same as the effect of permanent change on
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Figure 5: Impulse response functions

the long-run equilibrium values analyzed in Section 3.3. The second panel shows that the shock

produces a similar degree of change in the share of households’ equity holdings. As discussed in

Section 3.3, a rise in θt reduces the banks’ leverage and hence increase the share of households’

equity holdings. Owing to their utility costs in doing so, they demand a higher spread between

deposit and equity holdings, which results in the decline in the stock price. The free entry

condition of entrants’ R&D shows Wt = Qt/κ. Therefore, the third panel also represents the

response of the wage rate. This result is intuitive given that a lower stock price harms the

benefits of doing R&D, and therefore entrants will not do R&D unless its cost drops by the same

amount. A natural consequence of this is a decline in employment, as represented in the fourth

panel.

The fifth panel depicts the rate of change in labor employment in R&D. Here it is worth

noting that this rate the labor employed in R&D decreases more significantly than does the

overall employment. This occurs because the decline in the wage rate not only decreases overall

employment but also causes an intersectoral shift in employment. In this model, the leader firm

of each variety sets the price of λWt to eliminate follower firms and produces 1/(λWt) units of

output. The decline in the wage rate thus increases production in the intermediate goods firms,

which in turn increases employment in this sector. This intersectoral movement of labor results

in a more severe decline in employment in the R&D sector than in overall employment. The sixth
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panel represents the responses of the banks’ net worth. The directions of the transitory changes

are the same as the long-run changes obtained from the comparative statics. In particular, as

expected, the value of η is critical to determine the response in the banks’ net worth.13

The last three panels in the third row show responses of the variables exhibiting increasing or

decreasing trends. Without shocks, the final good price would be

P ∗
t =

W ∗

(1 + gZ)tλI
∗t
,

which continues to decline at the rate of g∗. Due to the financial shock, Pt actually moves

according to the following equation:

Pt =
Wt

(1 + gZ)tλ
∑s−1

t=0 Is
.

The seventh panel displays the movement of 100 × (lnPt − lnP ∗
t ). As already stated, in this

model, the wage rate falls in tandem with the stock price, and this further leads to a fall in the

price of intermediate goods. Immediately after the shock, this effect is strong, and the economy

experiences a decline in the final good price. At the same time, however, R&D investment declines,

which slows the improvement in the quality of intermediate goods. Eventually, this effect becomes

dominant, and the final good price becomes higher than the level that would have been reached

in the absence of the shock. Here note that the right-hand side of the equation giving Pt includes

the amount of R&D investment prior to period t. Thus, even if the decrease in R&D investment

is temporary and returns to its original value, this price increase will be permanent.

Once the movement of Pt is obtained, the response of real activity to the shock can also be

obtained. The eighth panel shows the response of the value added of real activity, which is given

by

Value added of real activity =
1 +QtIt

Pt
.

In this model, all sales of the final good are used as payment for the intermediate goods. Therefore,

the value added from real activity is generated from intermediate goods production and R&D

activities.14 The first and second terms in the numerator, respectively, correspond to the former

and the latter. I then evaluate them in real terms by dividing them by the final goods price.

The eighth panel shows the percentage deviation of this variable from what would have been

seen in the absence of the shock. Since even the transitory shock has a permanent impact on

Pt, real activity experiences a permanent slowdown relative to the absence of shocks. This result

comes from incorporating the mechanism of endogenous growth into the model and is consistent

13In this numerical example, Sh∗/(1− Sh∗) = 1.

14Since there is a spread between Re
t and Rd

t , there is also value added by financial intermediation. In order to

focus on real activity, however, I focus on value added through intermediate goods production and R&D for quality

improvement.
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with the previous studies such as Guerron-Quintana and Jinnai (2022). The last panel shows

the reaction of the real stock price, Qt/Pt. Since the movements of Qt and Pt are comparable

to each other immediately after the shock, initially there is not much of a reaction. However, a

permanent decline is then seen for the real stock price, due to a permanent increase in Pt from

the initial trend.

Thus, the model constructed in this study, although simplified, has some success in producing

theoretical results consistent with the phenomena we experienced during the financial crisis.

5 Discussion

5.1 Equity purchasing costs in terms of the final good

Thus far, the costs of households’ direct equity purchasing are modeled as disutility. This subsec-

tion examines whether the results obtained in the baseline model are robust against a change in

specification of such costs. To show this, suppose that the households must pay Ω(Sh
t , t) units of

the final good to obtain Sh
t units of intermediate good firms. I consider a deterministic economy.

The household’s utility maximization problem is given by

max
{Ct,Lt,Dt,Sh

t }∞t=0

∞∑
t=0

βt [lnCt + ζ ln(1− Lt)] ,

subject to

Rd
tDt−1 +Re

t (Qt−1S
h
t−1) +WtLt +Πbank

t − Tt = PtCt + PtΩ(S
h
t , t) +Dt +QtS

h
t .

The conditions for utility maximization are given by (4) and

Pt+1Ct+1

PtCt
= βRd

t+1, (26)

Re
t+1 = Rd

t+1

(
1 +

Pt

Qt

Ω(Sh
t , t)

∂Sh
t

)
. (27)

The market-clearing condition for the final good is now given by

Yt = Ct +Ω(Sh
t , t). (28)

The other conditions of equilibrium are the same as those of the baseline model.

Equation (28) shows that consumption and transaction costs must grow at the same rate as

the output on the BGP. Since Sh
t is bounded, however, we have to assume that Ω(Sh

t , t) continues

to grow even with Sh
t being constant. Therefore, I assume

Ω(Sh
t , t) = Γ(Sh

t )Yt,
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where the properties of Γ are the same as those of the baseline model. Then, from (28), Ct grows

at the same rate as Yt, which in turn means PtCt is constant. From (26) and (27),

Re
t+1 =

1

β

(
1 +

Γ′(Sh
t )

Qt

)
,

which is exactly the same as (14). Thus, we can obtain the same BGP equilibrium as the baseline

model with the assumption on the cost function Ω.

5.2 A model of variety expansion

In the baseline model, I employ the quality improvement of the intermediate goods as the engine

of endogenous growth. This subsection examines whether the results obtained in the baseline

model are robust under the specification of variety expansion.

5.2.1 Setup

Let Mt−1 denote the total mass of varieties available in period t. The production function of the

final good is given by

Yt = Zt

(∫ Mt−1

0
xt(ω)

σ−1
σ dω

) σ
σ−1

,

where σ > 1 is the elasticity of substitution between any two varieties. Because of PtYt = 1, the

first-order conditions of profit maximization under perfect competition are given by

xt(ω) = (PtZt)
σ−1pt(ω)

−σ,

Pt =
1

Zt

(∫ Mt−1

0
pt(ω)

1−σdω

) 1
1−σ

.

To produce xt(ω) units of the output requires the same units of labor. The profit-maximizing price

is given by pt(ω) = pt ≡ σ
σ−1Wt∀ω. From this result, the output and the profit are respectively

given by

xt(ω) = xt ≡
1

Mt−1

σ − 1

σWt
,

πt(ω) = πt ≡
1

σMt−1
.

Let vt denote the stock price of an intermediate good firm. The rate of return from holding the

equity Re
t+1 is now defined as

Re
t+1 ≡

πt+1 + vt+1

vt
.

In period t, to invent one unit of idea of the intermediate goods requires κ/Mt units of labor, where

Mt captures the knowledge spillovers. The free-entry condition with positive R&D investment is

given by

vt =Wt
κ

Mt
.
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The utility maximization problem is formulated as

max
{Ct,Lt,Dt,Mh

t }∞t=0

∞∑
t=0

βt
[
lnCt + ζ ln(1− Lt)− Γ̃(Mh

t ,Mt)
]
,

subject to

Rd
tDt−1 +Re

t (vt−1M
h
t−1) +WtLt +Πbank

t − Tt = PtCt +Dt + vtM
h
t ,

where Mh
t is the mass of intermediate good firms held by the households. Function Γ̃ represents

the disutility from such a direct holding. I assume

Γ̃1(M
h,M) > 0, Γ̃11(M

h,M) ≥ 0, Γ̃2(M
h,M) < 0,

where Γ1(2) is the partial derivative of Γ with respect to the first (second) argument. Since

PtCt = PtYt = 1, the conditions for maximization are given by equation (4), βRd
t+1 = 1, and

Re
t+1 =

1

β

(
1 +

1

vt
Γ̃1(M

h
t ,Mt)

)
. (29)

Each bank’s behavior is exactly the same as the baseline model. Equation (10) is implied

for the bank. The total mass of varieties now continues to grow. The aggregation of the banks’

behavior gives

Nt+1 = δ
(
Re

t+1vtM
b
t −Rd

t+1Dt

)
+ (1− δ)µNt, (30)

vtM
b
t =

ψt

θ
Nt, (31)

where M b
t ≡Mt −Mh

t is the mass of intermediate good firms held by the banks.

5.2.2 Equilibrium conditions

The labor market clears as

Lt =Mt−1xt +
κ

Mt
(Mt −Mt−1). (32)

I redefine Qt and S
h
t as Qt ≡ vtMt and S

h
t ≡ Mh

t /Mt, respectively. To obtain the BGP equilib-

rium, we have to make the following additional assumption.15

Assumption 4. Function Γ̃ is homogeneous of degree zero regarding Mh
t and Mt.

15To understand why, suppose that function Γ̃ is homogeneous of degree k, which implies Γ̃1 is homogeneous of

degree k − 1. Then, equation (29) is rewritten as

Re
t+1 =

1

β

(
1 +

Mk
t

Qt
Γ̃1(S

h
t , 1)

)
.

In the BGP equilibrium, Re
t+1, S

h
t , and Qt are stationary. In such an equilibrium, Mt grows at a constant rate.

Then, k = 0 must be true.
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I redefine function Γ as Γ(Sh
t ) ≡ Γ̃(Sh

t , 1). Then, (29) is rewritten as

Re
t+1 ≡

1

β

(
1 +

1

Qt
Γ′(Sh

t )

)
,

which is exactly the same as (14). The aggregate balance sheet of the banks is Dt+Nt = vtM
b
t =

Qt(1− Sh
t ). Then, we can easily find that (10), (30), and (31) are reduced to

ψt = (1− δ + δψt+1)

(
1 +

ψt

θ

Γ′(Sh
t )

Qt

)
,

Nt+1 =

[
δ

β

(
1 +

ψt

θ

Γ′(Sh
t )

Qt

)
+ (1− δ)µ

]
Nt,

Sh
t = 1− ψtNt

θQt
,

which are exactly the same as (15), (16), and (19).

Substituting πt+1 = 1/(σMt) into R
e
t+1 ≡ (πt+1 + vt+1)/vt and using Qt ≡ vtMt, we obtain

Re
t+1Qt =

1

σ
+Qt+1

Mt

Mt+1
. (33)

Substituting (4), the definition of x, and (3) into (32) yields

Mt−1

Mt
= 1− 1

κ
+

1

Qt

(
ζ + 1− 1

σ

)
. (34)

Substituting (14) and (34) (in period t+ 1) into (33), we obtain the dynamic equation of Qt as

Qt + Γ′(Sh
t ) = β [1 + ζ + (1− 1/κ)Qt+1] ,

which is exactly the same as (18). Thus, we can obtain the same equilibrium as the main body.

6 Conclusion

In some macroeconomic models with financial frictions, an adverse financial shock successfully

explains a drop in real activity, but it is often associated with a stock price boom. This prediction

is at odds with empirical observations in actual recessions. This study developed a simple theory

to explain both prolonged recessions and stock price declines. My macroeconomic model features

banks, financial frictions, and firms’ R&D activities to tackle this problem. Both the analytical

and numerical investigations show that endogenous R&D investment and a shock hindering banks’

financial intermediary function can be key to generating both a prolonged recession and a drop

in firms’ stock prices.

To obtain qualitative results, this study developed a highly stylized model. Owing to its

simplicity, the mechanism proposed in this study can be easily incorporated into a more complex

model for quantitative analysis. Therefore, it is a promising extension to quantitatively evaluate

the effects of the financial shock considered in this study. Nevertheless, the results obtained using

this model provide a useful benchmark.
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Appendix

A.1 Banks’ objective function

As in Gertler et al. (2020), each bank seeks to maximize its real net worth at the time of exit.

Thus, a bank’s original objective function at the end of period t is given by

Ṽt ≡ Et

 ∞∑
j=1

Λt,t+j(1− δ)δj−1nt+j

Pt+j

 ,
where Λt,t+j ≡ βj Ct

Ct+j
is the j-th period stochastic discount factor applied to each banker. We

can arrange the right-hand side as follows:

Ṽt =
1

Pt
Et

 ∞∑
j=1

βj
PtCt

Pt+jCt+j
(1− δ)δj−1nt+j


=

1

Pt
Et

 ∞∑
j=1

βj(1− δ)δj−1nt+j

 .
I now define Ṽt as Ṽt = Pt × Ṽt. Since the original objective function is evaluated in terms of the

final good, Ṽt is evaluated in terms of the final expenditure. Then,

Ṽt = Et

 ∞∑
j=1

βj(1− δ)δj−1nt+j

 .
Since each banker takes Pt as given, maximizing the original objective function is equivalent to

maximizing Ṽt.

A.2 Comparative statics of the BGP

This section shows the comparative statics for the BGP equilibrium. The variables Q∗, Sh∗, I∗,

and N∗ are determined from the following system of equations:

Q∗ =
δψ∗

β − δ − β(1− δ)µ

Γ′(Sh∗)

θ
,

Q∗ =
β(1 + ζ)− Γ′(Sh∗)

1− β + β/κ
,

I∗ =
1

κ
− 1 + λζ

λQ∗ ,

N∗ =
θQ∗(1− Sh∗)

ψ∗ .
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Note that ψ∗ does not depend on θ or κ. From these equations,

dQ∗

Q∗ =
Sh∗Γ′′

Γ′
dSh∗

Sh∗ − dθ

θ
, (35)

dQ∗

Q∗ = −aS
h∗Γ′′

Γ′
dSh∗

Sh∗ + b
dκ

κ
, (36)

dI∗

I∗
=

1 + λζ

λQ∗I∗
dQ∗

Q∗ − 1

κI∗
dκ

κ
, (37)

dN∗

N∗ =
dQ∗

Q∗ − Sh∗

1− Sh∗
dSh∗

Sh∗ +
dθ

θ
, (38)

where

a ≡ Γ′

β(1 + ζ)− Γ′ > 0,

b ≡ β/κ

1− β + β/κ
∈ (0, 1).

The value of a is positive as long as Q∗ > 0. From (35) and (36),

dQ∗

Q∗ =
1

1 + a

(
−adθ

θ
+ b

dκ

κ

)
, (39)

dSh∗

Sh∗ =
1

1 + a

Γ′

Sh∗Γ′′

(
dθ

θ
+ b

dκ

κ

)
. (40)

Then,
dQ∗/Q∗

dθ/θ
< 0,

dQ∗/Q∗

dκ/κ
> 0,

dSh∗/Sh∗

dθ/θ
> 0,

dSh∗/Sh∗

dκ/κ
> 0.

Substituting (39) into (37) and using the fact that 1+λζ
λQ∗I∗ = 1

κI∗ − 1 > 0,

dI∗

I∗
=

1

1 + a

(
1

κI∗
− 1

)(
−adθ

θ
+ b

dκ

κ

)
− 1

κI∗
dκ

κ

=
−a
1 + a

(
1

κI∗
− 1

)
dθ

θ
− 1

1 + a

(
1 + a− b

κI∗
+ b

)
dκ

κ
,

which implies
dI∗/I∗

dθ/θ
< 0,

dI∗/I∗

dκ/κ
< 0.

Finally, substituting (39) and (40) into (38) yields

dN∗

N∗ =
1

1 + a

(
1− Γ′

(1− Sh∗)Γ′′

)(
dθ

θ
+ b

dκ

κ

)
.

A.3 Calibration details

The following parameters were chosen exogenously: β = 0.99, δ = 0.93, and λ = 1.15. Since

the value of η affects the comparative statics, I consider three cases: a low value (η = 0.8), an

intermediate value (η = 1), and a large value (η = 1.2). I set the aggregate hours of work in the

BGP equilibrium to L∗ = 0.3 and the employment share of R&D activities to 7%. Then,

L∗
R&D ≡ κI∗ = 0.07L∗ = 0.021.
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The wage rate W ∗ is given by W ∗ = 1/[λ(L∗ − L∗
R&D)]. The value of ζ is given by

ζ =W ∗(1− L∗).

I set the target value of Sh∗ to 0.5. I also assume that the spread is 2% per year: Re∗ − Rd∗ =

1.021/4 − 1. Then, κ, γ, Q∗, and I∗ are determined from

Re∗ −Rd∗ =
γ(Sh)η

βQ∗ , (41)

Q∗ + γ(Sh)η = βπ + β(1− I∗)Q∗, (42)

Q∗ =W ∗κ, (43)

L∗
R&D = κI∗. (44)

Here, note that the variation of η induces only the variation of γ. From (43) and (44), we

obtain Q∗I∗ = W ∗L∗
R&D, where the value of the right-hand side has been already determined.

Substituting this into (42) yields

(1− β)Q∗ + γ(Sh)η = β(π −W ∗L∗
R&D). (45)

Then, Q∗ and γ are determined from (41) and (45):

Q∗ =
β(π − w∗L∗

R&D)

β(Re∗ −Rd∗) + 1− β
,

γ =
β2(Re∗ −Rd∗)(π − w∗L∗

R&D)

(Sh)η[β(Re∗ −Rd∗) + 1− β]
.

Thus, η does not affect Q∗. Accordingly, I∗ and κ are also independent of η.

I choose the balanced growth rate g∗ such that the growth rate is 2% per year: 1+g∗ = 1.021/4.

The rate of exogenous technological progress gZ is determined from gZ = g∗ − I∗ lnλ. Following

Gertler and Kiyotaki (2015) and Gertler et al. (2020), I set the banks’ leverage Q∗Sb∗/N∗ to 10.

Since Q∗Sb∗ is already known, this determines the value of N∗. Furthermore, ψ∗/θ is determined

as 10. On the BGP, the following equations hold:

1 +
ψ∗

θ

Γ′(Sh∗)

Q∗︸ ︷︷ ︸
already found

= B∗ =
β[1− (1− δ)µ]

δ
,

where the first equality comes from (20) and the second one comes from the definition of B∗.

Then, µ is determined. Finally, ψ∗ and θ are respectively determined as ψ∗ = (1−δ)B∗

1−δB∗ and

θ = ψ∗/10.

A.4 Log-linear approximation

A hat over a variable indicates the log-deviation of the variable from its stationary value. For

example, Q̂t = ln(Qt/Q
∗) ≃ (Qt − Q∗)/Q∗. The log-linear approximation of the system (15),
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Table 3: Eigenvalues of matrix J

(i) 3.6542 0.9570 1.0214 0.9000

(ii) 3.6578 0.9538 1.0249 0.9000

(iii) 3.6614 0.9510 1.0281 0.9000

(16), (18), and (19) around (ψ∗, N∗, Q∗, Sh∗) is

ψ̂t =
δψ∗

1− δ + δψ∗ ψ̂t+1 +
B∗ − 1

B∗ (ψ̂t + ηŜh
t − Q̂t − θ̂t),

N̂t+1 =
δ

β
(B∗ − 1)(ψ̂t + ηŜh

t − Q̂t − θ̂t) + N̂t,

Q∗Q̂t = β(1− 1/κ)Q∗Q̂t+1 − ηγ(Sh∗)ηŜh
t ,

Ŝh
t =

1− Sh∗

Sh∗ (Q̂t − ψ̂t − N̂t + θ̂t).

These equations provide the following autonomous dynamical system:
Q̂t+1

ψ̂t+1

N̂t+1

θ̂t+1

 =


Q∗+X∗

βQ∗(1−1/κ) − X∗

βQ∗(1−1/κ) − X∗

βQ∗(1−1/κ)
X∗

βQ∗(1−1/κ)
H∗(1−ηα∗)

Ψ∗
1−H∗(1−ηα∗)

Ψ∗
H∗ηα∗

Ψ∗
H∗(1−ηα∗)

Ψ∗

−F ∗(1− ηα∗) F ∗(1− ηα∗) 1− F ∗ηα∗ −F ∗(1− ηα∗)

0 0 0 ρ


︸ ︷︷ ︸

≡J


Q̂t

ψ̂t

N̂t

θ̂t

 ,

where

α∗ ≡ (1− Sh∗)/Sh∗,

X∗ ≡ γη(Sh∗)ηα∗,

H∗ ≡ B∗ − 1

B∗ ,

F ∗ ≡ δ(B∗ − 1)

β
,

Ψ∗ =
1− δ + δψ∗

δψ∗ .

Table 3 reports the eigenvalues of matrix J, where “(i), (ii)...” correspond to the calibration

scenario. This table shows that, in all three scenarios, the dynamical system has two eigenvalues

with absolute values less than 1. Thus, the impulse response function of each variable is uniquely

determined in all three cases, because the system has two state variables (Nt and θt) and two

jump variables (Qt and ψt).
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