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Abstract

This study examines the effect of the principal’s control over the agent’s behav-
ior in a dynamic principal-agent model with hidden information. We show the
condition that the agent who has a similar preference for actions as the principal
dares to choose the unpreferred action when the principal imposes a sanction on
such an action. This also makes the principal worse off even when imposing
sanctions is materially costless. When the principal incurs a cost on sanctions,
they cease implementing them after observing the unpreferred action taken by the
agent. Our results of the hidden cost of control correspond to the insight from the
psychological reactance theory: when an agent’s freedom is threatened, they resist
it to restore the freedom.
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1. Introduction

The incongruence in preferences between the principal (she) and the agent (he) as well as

private information held by the agent deteriorates efficiency in agency models. To mitigate

inefficiency, the principal implements controls aswell as rewards for the agent’s actions to direct

him to act according to her preferred behavior. However, controls often do not work well and,

consequently, exacerbate the agency problem. This malfunction of controls is referred to as the

“hidden cost of controls” (e.g., Falk andKosfeld, 2006) : the principal’s unexpected cost caused

by the agent’s reaction to controls. However, for the principal, whether the hidden costs are

eventually outweighed by the gain of controls is still a controversial issue (e.g., Schnedler and

Vadovic, 2011). This implies that it is also important to understand how the principal reacts, in

turn, to the agent’s reactions. Beyond economics literature, the psychological reactance theory

(Brehm, 1966; Brehm and Brehm, 1981) states that when the agent’s freedom is threatened, he

resists it to restore the freedom. This phenomenon can be considered a hidden cost of controls.

To confirm whether to restore freedom, the principal’s reaction to the agent’s reactance must

be studied. The contributions of this study are to show not only how the agent reacts to the

controls of the principal and how the reaction affects the principal’s welfare, but also how the

principal responds to the agent’s reaction in our dynamic agency model.

In our model, the principal and agent interact for two periods: In each period, the agent

chooses an action, either x or y. Although the principal prefers the agent to take action x, the

agent’s preferred action depends on his type: one type of agent prefers x to y, whereas another

type of agent prefers y to x. For example, x can be a mission-oriented action that is the right

direction for the organization to which both the principal and agent belong, whereas y is a

self-interested action that benefits only the agent. Whether the agent cares about such a mission

depends on his preference. In this sense, we can interpret that an agent who prefers x to y is

a motivated agent, whereas the one who prefers y to x is a selfish agent.1 The following two
1We borrow the terms “motivated” and “selfish” agent fromBesley and Ghatak (2006), although their definitions
are not the same as those used in our study.
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components are the crux of our model. First, to make the agent choose the principal’s preferred

action x, the principal can use financial incentives and sanctions as controls. The former is a

monetary reward for the agent taking x, while the latter is a non-monetary sanction for taking y.

A sanction is supposed to be a control device, such as reprimands, moralization, stigmatization,

or threatening with demotions, which the agent experiences. Second, the principal faces two

kinds of uncertainty regarding the agent’s preferences. The first uncertainty is the agent’s

preferences for actions. We suppose that while the agent’s material payoff for taking x is

normalized to be zero regardless of his type, the payoff for taking y is either positive or

negative, depending on his type: it is negative (positive) for the motivated (selfish) agent. The

second uncertainty is the agent’s tolerance for sanctions. Although sanctions make both types

of agents worse off, how much the agent suffers from them depends on the agents’ types of

tolerance. In our model, the principal offers a contract at the beginning of each period. This

signifies that the principal can offer a second-period contract after observing the first-period

action taken by the agent.

We first show an equilibrium in which the motivated agent with a tolerance takes the

unpreferred action y, which we refer to as reactance. In addition, reactance leads to the result

that the availability of sanctions decreases the principal’s payoff when the probability of the

motivated agent with a tolerance is sufficiently high. This result can be interpreted as the

hidden cost of controls for the principal: the principal unintentionally reduces her welfare

when she imposes sanctions to lead the agent to act according to her preferred behavior, but

this disincentivizes the agent. Although reactance occurs even when sanctions are unavailable,

we specify the condition that it is more likely to happen when sanctions are available than

when they are not. These results hold when imposing sanctions is materially costless for the

principal.

To observe and explain the reasons for our results, we first confirm that sanctions have two

effects on the agent’s decisions: (1) sanctions directly reduce the agent’s material benefit of
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opting for the principal’s unpreferred behavior; (2) if the principal imposes a sanction on her

unpreferred behavior, she can reduce the reward for the preferred behavior to make the selfish

agent take it; thus, the information rent for the motivated agent is reduced. Because this

reduction of reward weakens the incentives for the motivated agent to imitate a selfish agent,

the availability of sanctions makes the principal better off. Although this observation is true

even in a static setting, the principal’s problem is more complicated in our dynamic model.

Consider the second period. After observing the agent’s first-period behavior, the principal

updates her belief about the agent’s preferences for actions and tolerance. Considering this

belief formation process with the above observation in a static setting, we find that a mixed

strategy equilibrium occurs from the interaction between the conditional probability of the

selfish agent with a tolerance after observing the unpreferred action y in the first period and

the incentives to take y for the motivated agent with a tolerance who anticipates the second-

period reward after taking y in the first period. When the conditional probability is high, the

principal should raise the second-period reward to prevent the selfish agent from taking y.

However, such a high reward causes the motivated agent to imitate a selfish one. In this case,

the probability decreases, and the principal should lower the reward. Consequently, a low

reward makes the motivated agent take x, and the probability increases. This emergence of a

mixed equilibrium is true even when sanctions are unavailable. However, when the principal

can impose sanctions, she can reduce the second-period reward to prevent the selfish agent

from taking y, which enables her to offer the contract with a positive reward with certainty. If

the disutility from being sanctioned is sufficiently small, the reduction in reward is also small,

which increases the expected value of information rent. This incentivizes the motivated agent

with a tolerance to take y, and reactance is more likely to occur when sanctions are available.

We next show that evenwith a small material cost of imposing sanctions, there is a possibility

that although the principal imposes a sanction in the first period, she refrains from this in the

second period, after observing reactance in the first period. To observe this, we assume that
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the intolerant agent never takes unpreferred action when a sanction is imposed. Then, under

the condition that the agent took the unpreferred action, the agent must be tolerant. As in

the costless sanctioning case, there is an equilibrium in which the principal mixes a contract

comprising a sufficiently high reward with that comprising no reward. If the principal offers a

contract with no reward for the preferred action, then imposing a sanction does not affect the

tolerant agent’s behavior. Although the selfish agent takes the unpreferred action, the motivated

agent takes the preferred action. As imposing sanctions is costly and the principal is aware

that the agent is tolerant, she decides not to impose sanctions. Note that this phenomenon

occurs only when reactance behavior is observed. If this behavior does not occur–as taking the

unpreferred action implies that the agent is selfish–the principal never offers a contract with no

reward: the principal prefers to offer a contract with a sufficiently high reward to prevent the

selfish agent from taking the unpreferred action.

We can summarize our results as corresponding with those presented in the psychological

reactance theory, which theory explains the reactance behavior and restoration of freedom as

follows: When the agent’s freedom of choice is threatened or eliminated, he dares to take an

unpreferred action for the principal, who restricts the freedom to restore the freedom even if

the agent also does not prefer to take such an action. If we interpret the principal’s imposing

sanctions as a thread to freedom for the agent, after observing the reactance behavior by the

motivated agent, the principal may decide not to impose sanctions, which can be interpreted

as the agent’s freedom being restored. In this sense, our results support the insight from

psychological reactance theory.

The rest of the paper is organized as follows. Section 2 introduces our model. In Section 3,

we examine the benchmark case where sanctions are unavailable. In Section 4, we study

the equilibrium strategies of both the principal and the agent when sanctions are available.

Section 5 demonstrates the effects of the availability of sanctions. In Section 6, we analyze

the case where sanctions are materially costly for the principal. Section 7 provides the related
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literature and Section 8 concludes the paper.

2. Model

In our model, a principal and an agent interact for two periods, t ∈ {1, 2}. Both players are

risk-neutral and do not discount the future. Furthermore, each player’s payoff in period t

depends on the agent’s choice, which is denoted by dt ∈ {x, y}. We suppose that the agent’s

choices are observable by the principal. Although the payoff for both players is normalized to 0

when dt = x, the principal’s payoff is −1 and that of the agent’s is u ∈ {u, u} when dt = y. This

means that the principal prefers x to y, but the agent’s preferred choice depends on his type.

We assume that u < 0 < u < 1 and u + u > 0. The first assumption implies that (i) without

the principal’s intervention, an agent with u = u prefers to take x, but one with u = u prefers

to take y, and (ii) x is efficient for any type realization. From the principal’s perspective, an

agent with u = u is considered a motivated agent because the preferred actions are aligned. In

contrast, an agent with u is perceived as a selfish agent because the preferences are misaligned.

The second assumption implies that the degree of preferring a motivated agent x is weaker

than that of preferring a selfish agent y. The prior probability is Pr(u = u) = β, and the true

value of u is the agent’s private information.

In each period, the principal has two means that cause the agent to take x. One is to

give a monetary reward mt > 0 to the agent for taking x.2 The other is to impose a non-

monetary sanction on the agent taking y. The principal’s choice of imposing sanctions at t

is binary: st ∈ {0, 1}; st = 0 signifies imposing no sanction and st = 1 means the opposite.3

The principal’s cost of imposing a sanction is denoted by c > 0. The agent is averse to the

imposition of a sanction. When the agent is imposed with a sanction, he incurs a cost a ∈ {a, a}

where 0 < a < a. We refer to the agent that has a = a (a = a) as an agent with (without) a

2We assume that a monetary reward is non-negative.
3Supplementary material I considers a case in which st ∈ [0, 1].
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tolerance. The prior is Pr(a = a) = γ, and the true value of a as well as u is the agent’s private

information. We assume that u and a have no correlation. In each period, the principal offers

a contract (st,mt) before the agent’s decision. Note that the second period contract (s2,m2) can

depend on first-period behavior. In this case, we state (s2(d1),m2(d1)).

In summary, in each period t, the principal’s instantaneous payoff is −I(dt = x)mt − I(dt =

y)(1+ cst) and that of the agent is I(dt = x)mt + I(dt = y)(u− sta), where I(E) = 1 if E is true,

otherwise, I(E) = 0. The agent’s type can be specified using the private information regarding

his payoff from taking y and cost of the imposed a sanction, (u, a). We focus on perfect

Bayesian Nash equilibria satisfying the dominance criterion (PBE). The timing is summarized

as follows:

t = 1 1. The principal offers (s1,m1) ∈ {1, 0} ×R+.

2. The agent chooses d1 ∈ {x, y}.

3. (s1,m1) is implemented depending on d1.

t = 2 1. After observing d1, the principal offers (s2(d1),m2(d1)) ∈ {1, 0} ×R+.

2. The agent chooses d2 ∈ {x, y}.

3. (s2(d1),m2(d1)) is implemented depending on d2.

3. The Benchmark Case: No Sanctions

As a benchmark, this section examines the case in which sanctions are unavailable. We can

interpret this case as the case when the principal makes a long-term commitment of s1 = s2 = 0.

First, consider period 2. Let Pd1 = Pr(u = u | d1) be the updated probability of the selfish

agent after the principal observes d1. To make the selfish agent take x, the principal must

pay m2 = u. Further, because the motivated agent also takes x when m2 = u(> 0 > u), the

principal’s payoff is −u. If the principal offers m2 < u, m2 = 0 is optimal because only the
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motivated agent takes x. In this case, the principal’s expected payoff is −Pd1 . As a result,

m2 = u is optimal if Pd1 > u; otherwise, m2 = 0 is optimal. Next, based on this second-period

behavior, we examine the first period. Let B1 B
u+u
1
u
+u
, and B2 B

u−u
1−u . Note that B1 < u < B2.

We have the following results:

Proposition 1. The equilibrium behavior in the first period and the principal can be charac-

terized as follows:

(i) β > B2: m1 = u is optimal for the principal. In this case, any type of agent takes x.

(ii) β ∈ (B1, B2): m1 = u + u is optimal for the principal. In this case, the selfish agent takes

y and the motivated agent takes x.

(iii) β < B1: m1 = 0 is optimal for the principal. In this case, the selfish agent takes y and

the motivated agent takes a mix of x and y (takes y with probability β
1−β

(
1−u

u

)
).

When β is high–that is, the prior belief of the selfish agent is high–the cost caused by the

selfish agent taking y is high. To avoid this cost, the principal must offer a high m1 such that

the selfish agent takes d1 = x (Proposition 1 (i)). However, the principal bears the additional

cost of providing such a high m1 because she needs to pay it not only to the selfish agent but

also to the motivated agent who would take x even if m1 = 0. As β decreases, this negative

effect of a high m1 becomes serious. Subsequently, the principal reduces m1, although it still

needs to be positive. Reducing m1 weakens the incentive for both types of agents to take

d1 = x. Further, increasing m2(y) provides an incentive for the selfish agent to take d2 = x,

even though it increases the cost incurred by the selfish agent taking d1 = y. Through this

contract, the principal can separate the selfish from the motivated agent (Proposition 1 (ii)). As

β becomes much lower, the principal can reduce m1 further, but this gives an incentive for the

motivated agent to take d1 = y under a positive m2(y). In this case, however, as β is adequately

low, after observing y is taken, the agent is extremely likely to be motivated, which makes the

principal offer m2(y) = 0. This, in turn, incentivizes the motivated agent to take x, which also
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motivates the principal to offer m2(y) = u for forcing the selfish agent to take x. This cycle

makes the principal take the mixed strategy between m2(y) = 0 and u, and the motivated agent

takes the mixed strategy d1 = x and y (Proposition 1 (iii)). In summary, when β is sufficiently

small, the motivated agent, who has no material benefit of taking y, may prefer to take y in an

equilibrium. We refer to this behavior as a reactance by the motivated agent.

4. The Availability of Sanctions

In this section, we analyze how the principal takes advantage of her availability to impose

sanctions for taking y, and how this opportunity influences the agent’s behavior. As an

additional sanction can reduce future payoff and present cost of taking y, the benefit of the

agent in taking y decreases at first glance. However, the availability of sanctions may affect

the possibility of reactance. By considering these effects, the principal determines whether to

impose a sanction in each period.

For the sake of simplicity, we make the following assumptions:

Assumption 1. (i) v1 B u − a > 0 > v2 B u − a > v3 B u − a > v4 B u − a, (ii)

v1 + v2 > 0 > u + v3, and (iii) (1 + c)γ < 1.

Assumption 1 holds when a is close to 0, a is sufficiently large, and c is adequately small.

As in the previous section, we start by considering the second period. Given m2(d1) and s2,

the agent takes x if only ifm2(d1) > u−s2a. First, suppose that s2 = 1. In this case, evenwithout

a reward, only the selfish agent with a tolerance takes y. Subsequently, the probability of this

agent (i.e., (u, a) = (u, a)) matters for the decision on m2(d1). Let P∗d1
= Pr((u, a) = (u, a) | d1)

be the principal’s updated probability of the selfish agent with a tolerance after observing d1.

As similar to the analysis in the benchmark case, if (1 + c)P∗d1
> v1, m2(d1) = v1 is optimal;

otherwise, m2(d1) = 0 is optimal. Second, suppose that s2 = 0. If Pd1 = Pr(u = u | d1) > u,

m2(d1) = u is optimal; otherwise, m2(d1) = 0 is optimal. We have the following lemma:
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Lemma 1. The best responses of each player in the second period can be summarized as

follows:

The principal’s behavior:

(i) If Pd1 = min{(1 + c)P∗d1
, Pd1, v1}, (s2(d1),m2(d1)) = (0, 0) is optimal.

(ii) If (1 + c)P∗d1
= min{(1 + c)P∗d1

, Pd1, v1}, (s2(d1),m2(d1)) = (1, 0) is optimal.

(iii) If v1 = min{(1 + c)P∗d1
, Pd1, v1}, (s2(d1),m2(d1)) = (1, v1) is optimal.

The agent’s behavior:

If s2 = 1, the selfish agent with a tolerance takes y if and only if m2(d1) < v1; the other types

take x for any m2(d1) > 0. If s2 = 0, the selfish agent takes y if and only if m2(d1) < u; the

other types take x for any m2(d1) > 0.

Note that the principal has the following four possible options: (i) The principal neither

imposes a sanction against y nor rewards for x: As only the selfish agent takes y, the principal’s

expected payoff is −Pd1 . (ii) The principal imposes a sanction against y but gives no reward

for x: As only the selfish agent with a tolerance takes y, the principal’s expected payoff is

−(1+ c)P∗d1
. (iii) The principal imposes a sanction against y and rewards for x: In this case, all

types of agents take x. Then, the principal’s expected payoff is −v1. (iv) The principal imposes

no sanction against y but rewards for x. In this case, the principal must pay −u to prevent the

selfish agent from taking y, and her expected payoff is −u. Among these, (iv) is never better

than (iii) because u > v1 = u − a. Lemma 1 states that either (i), (ii), or (iii) is optimal.

Next, we consider the first period. As in the previous section, we examine whether there is

an equilibrium in which the motivated agent takes y. Consider the case where s1 = 1. For

each reward plan, the equilibrium behavior is summarized in the following lemma:

Lemma 2. Suppose that s1 = 1. The first-period behavior can be characterized as follows:

(i) The agent without a tolerance takes x.

(ii) The selfish agent with a tolerance takes x if only if m1 > v1.
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(iii) As for the motivated agent with a tolerance:

a) If β > v1, the agent takes x if only if m1 > v1 + v2.

b) If β < v1, the agent takes x if m1 > v1 + v2. If m1 < v1 + v2, the agent takes y with

probability β
1−β

1−v1
v1

and takes x with the complementary probability. In this case, in

the second period, the principal sets (s2(y),m2(y)) = (1, v1) with probability m1−v2
v1

and (s2(y),m2(y)) = (0, 0) with the complementary probability.

By Assumption 1, the agent without a tolerance never takes y. This is because, for this

agent, the cost of being sanctioned by taking y is much higher than the benefit of earning an

information rent by taking it and imitating a selfish agent with a tolerance. Next, we focus on

the behavior of the agent with a tolerance. When m1 is sufficiently large (m1 > v1), both types

of agents are eager to take x. As m1 decreases (v1 > m1), the selfish agent with a tolerance

decides to take y, whereas the motivated agent with a tolerance still chooses to take x. The

motivated agent with a tolerance also has an incentive to take y as m1 is decreasing further

(v1 + v2 > m1).

In our dynamic model, rewards in the second period influence behavior in the first period.

First, suppose β is adequately high such that β > v1. Even if themotivated agentwith a tolerance

takes y, the principal’s updated belief of the selfish agent with a tolerance (P∗y) is sufficiently

large because of a high β. Then, the principal is willing to offer m2(y) = v1. However, this

induces the motivated agent with a tolerance to take d1 = y to earn the information rent. When

m1 is small (m1 < v1 + v2), this temptation has a more serious effect on the principal’s welfare.

Second, suppose that β is adequately small such that β < v1. Even if the motivated agent with

a tolerance takes y, the principal’s updated belief of the selfish agent with a tolerance (P∗y) is

sufficiently low because of a small β. Then, the principal is willing to offer m2(y) = 0. This

leads the motivated agent with a tolerance to take d1 = x. However, the updated belief above

becomes equal to 1, following which the principal should set m2(y) = v1. This, in turn, leads

to a mixed strategy equilibrium as in Proposition 1 (iii).
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To observe the role of imposing sanctions on y in the first period, we consider the equilibrium

behavior in this period when s1 = 0 and we have the following lemma:

Lemma 3. Suppose that s1 = 0. The first-period behavior can be characterized as follows:

(i) The selfish agent takes x if only if m1 > u.

(ii) For the motivated agent:

a) If v1 > (1 + c)γ or m1 > v1 + u, the agent takes x.

b) If v1 < (1 + c)γ and m1 < v1 + u, the agent takes y with probability β
1−β (

(1+c)γ−v1
v1
)

and x with the complementary probability. In this case, in the second period, the

principal sets (s2(y),m2(y)) = (1, v1) with probability m1−u
v1

and (s2(y),m2(y)) =

(1, 0) with the complementary probability.

The crucial difference between s1 = 1 and s1 = 0 regarding the equilibrium behavior of

the agent appears in the separation: When s1 = 1, separation occurs between tolerant and

intolerant agents, whereas when s1 = 0, it occurs between selfish and motivated agents, as in

the case when sanctions are unavailable.

The following lemma summarizes the unique equilibrium payoff of the principal, given that

m1 and s1, which is denoted by π(m1, s1):

Lemma 4. For the given m1 and s1, the unique equilibrium payoff of the principal can be
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summarized as follows:

π(m1, 1) =



−m1 −min{(1 + c)γβ, v1} if m1 > v1

−γβ(1 + c + v1) − (1 − γβ)m1 if m1 ∈ (v1 + v2, v1)

−γ(1 + c + v1) − (1 − γ)m1 if m1 ∈ [0, v1 + v2) and v1 < β

−
γβ
v1
(1 + c + v1) −

(
1 − γβ

v1

)
m1 if m1 ∈ [0, v1 + v2) and v1 > β.

π(m1, 0) =



−m1 −min{(1 + c)γβ, v1} if m1 > u

−β(1 +min{v1, (1 + c)γ}) − (1 − β)m1 if m1 ∈ (v1 + u, u)

−β(1 + (1 + c)γ) − (1 − β)m1 if m1 ∈ [0, v1 + u) and v1 > (1 + c)γ

−
(1+c)γβ

v1
(1 + v1) −

(
1 − (1+c)γβ

v1

)
m1 if m1 ∈ [0, v1 + u) and v1 < (1 + c)γ.

The first observation using Lemma 4 is that when the sanctioning is costless (i.e., c = 0),

s1 = s2 = 1 is always optimal.4

Proposition 2. Here, suppose that c = 0; subsequently, s2 = 1 in any Perfect Bayesian

Equilibrium. For the principal, s1 = 1 is always optimal.

This proposition implies that when sanctioning is costless, the principal never refrains from

sanctioning for taking y. By imposing sanctions, the agent’s benefit of taking y decreases. This

seems to decrease the probability of the unpreferred action being taken directly. Moreover, the

principal can save the payment on x to make the agent take y. Therefore, as sanctioning is

costless, there is no reason to forgo the option of sanctioning.

However, Proposition 2 does not imply that the probability of taking the unpreferred action

becomes lower when the principal imposes sanctions for the agent taking y. In the next

section, we show that allowing the sanctioning option can increase the probability of taking

the unpreferred action, and we further explore the role of forgoing the sanctioning option on

the probability of taking y and the principal’s payoff.

4Our main results hold even when c > 0. We will study the case of costly sanctions (c > 0) in section 6.
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5. Hidden Cost of Sanctions

To study how the availability of sanctions influences the agent’s behavior and the principal’s

welfare, we compare the equilibrium reactance probabilities and the principal’s payoffs between

the cases where sanctions are available and unavailable.5 Even though imposing sanctions

does not incur any monetary cost, the principal may suffer from the agent’s reactance when she

imposes sanctions on the agent’s behavior. We can interpret this negative effect of imposing

sanctions as a hidden cost of sanctions for the principal. The following lemma characterizes

when the motivated agent takes y with a positive probability.

Lemma 5. (i) Suppose that β > v1. The motivated agent with a tolerance takes y with certainty

in the unique equilibrium if and only if

v1 + v2
1 + v1 − β(1 − v2)

> γ.

(ii) Suppose that β < v1. The motivated agent with a tolerance takes y with probability
β

1−β
1−v1
v1

in the unique equilibrium if and only if

1
β

v1 + v2
1
v1
+ v2

> γ.

From Proposition 1 and Lemma 5, Figure 1 summarizes when the motivated agent takes y

depending on β and γ in the cases when sanctions are available and unavailable. Let Rs and

Rns be the probability that the motivated agent takes y in the first period when sanctions are

available and unavailable, respectively.

First, when sanctions are unavailable, Proposition 1 shows that Rns is positive for small β.

Proposition 1 (iii) shows that if β < B1, the probability that the motivated agent takes y is

increasing in β. Since this makes the principal worse off, she would reward for taking x and

the motivated agent to take x. Therefore, if β is high, Rns becomes 0. Next, when sanctions
5In this section, we still assume that c = 0.
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β

γ

B1v1

γ =

{
1
β

v1+v2
1/v1+v2

if β < v1
v1+v2

1+v1−β(1−v2)
if β > v1

1

1 Rs = 0, Rns = 0
Rs > 0, Rns = 0
Rs = 0, Rns > 0
Rs > 0, Rns > 0

Figure 1: The region where the probability of reactance is positive

are available, Rs is positive for small γ. Note that when γ is small, the agent’s type is more

likely to be intolerant to sanctions. This implies that sanctions work as well as incentives to

choose x for the agent with a tolerance, and the principal need not give a reward for taking x

additionally. However, the motivated agent with a tolerance still has incentives to take y, and

Rs becomes positive for small γ.

Next, we focus on the region of the β-γ plane where Rs > 0 and Rns > 0 and compare these

probabilities.

Proposition 3. Consider the region of the β-γ plane where Rs > 0 and Rns > 0.

(i) If β > v1, Rs > Rns if only if γ > β
1−β

1−u
u .

(ii) If β < v1, Rs > Rns if only if γ > 1−u
1−v1

v1
u .

In the region surrounded by the dashed line of Figure 2, Rs > 0 and Rns > 0. Proposition 3

indicates that in this region, the availability of sanctions is more likely to cause the agent’s

reactance (Rs > Rns) when γ is sufficiently high
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γ =
β

1−β
1−u

u

β

γ

B1v1

(1 − u)v1
(1 − v1)u

1

1 Rs > Rns

Rs < Rns

Rs > 0, Rns > 0

Figure 2: The probability of reactance

This is because, at first, the availability of sanctions increases the probability of reactance

by the motivated agent with a tolerance–which occurs owing to the indifferent condition for

the mixed strategy equilibrium. Accordingly, given the condition where y is taken in the first

period, the second-period expected payoff under zero reward (m2(y) = 0) must increase if

that under a positive reward increases. Note that when sanctioning is available, m2(y) = v1

is sufficient for discouraging the selfish agent with a tolerance from taking y while it requires

m2(y) = u > v1 when sanctioning is unavailable. Next, the availability of sanctioning increases

the second period expected payoff under m2(y) > 0. This incentivizes the principal to offer

m2(y) = v1, which, in turn, motivates the agent to take y. As the agent without a tolerance

never takes y, it only increases the probability of the motivated agent with a tolerance taking

y. As γ is the proportion of agents with a tolerance, the total probability of reactance is higher

when sanctioning is available with high γ.

Finally, we compare the principal’s payoffs between the two cases. Let πs and πns be the

principal’s optimal payoff when a sanction is available and unavailable, respectively. The
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β

γ

v1

B1v1

(1 + u)v1
(1 + v1)u

γ = 1
β

v1+v2
1/v1+v2

1

1 πs < πns

πs > πns

Figure 3: Comparison of the principal’s payoffs

following proposition shows that the hidden cost of sanctions can be extremely severe, such

that the availability of sanctions reduces the principal’s payoff.

Proposition 4. If β < min{v1, B1,
1
γ

v1+v2
1/v1+v2

} and γ > 1+u
u

v1
1+v1

, πns > πs.

The intuition is similar to why the probability of reactance is higher when sanctioning is

available (Rs > Rns). When β is sufficiently small, the principal can be better off by saving

rewards even if it caused the agent’s reactance. As shown in Proposition 3, if γ is sufficiently

large, the probability of reactance is higher when sanctioning is available. This clearly showed

that the loss of the principal’s payoff is greater when sanctioning is available. Consequently,

the principal can improve her welfare by forgoing her option of sanctions if β is small and γ is

large.6 Additionally, note that the threshold of γ, 1+u
u

v1
1+v1

, is decreasing in a. Therefore, if β

is sufficiently small, as a gets larger, πns > πs is more likely to happen.

6In most of the other regions, however, πs > πns , as illustrated in Figure 3. See the proof for Proposition 4 in
Appendix A for the full classification.
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6. Costly Sanctions: Psychological Reactance and

Restoration of Freedom

As briefly mentioned in the Introduction, the psychological reactance theory (PRT) defines

psychological reactance as the motivational state that is hypothesized to occur when freedom is

threatened or eliminated.7 Freedoms are the beliefs that individuals hold about how they may

act. As individuals perceive specific freedoms, anything that makes exercising freedom more

difficult represents a threat to freedom. PRT also contends that individuals will be motivated

to reestablish that freedom when their perceived freedom is threatened or eliminated.

After studying how and when the agent’s reactance to controls occurs when the principal can

impose sanctions without material cost, we now examine how an agent restores his freedom and

how reactance for the restriction of freedom occurs when the principal must incur a material

cost to impose sanctions. We establish the following proposition:

Proposition 5 (Restoration of freedom). Suppose that v1 > β and c > 0. If γ is sufficiently

small, the principal offers (s1,m1) = (1, 0) and (s2(x),m2(x)) = (1, 0). When y is taken at the

first period, the principal mixes (s2(y),m2(y)) = (0, 0) and (s2(y),m2(y)) = (1, v1).

Proposition 5 says that the principal imposes sanctions in the first period. After observing

the agent’s reactance, the principal gives up imposing sanctions with a positive probability

in the second period. This result can be interpreted as follows: When the principal aims to

restrict the agent’s behavior by imposing sanctions for her unpreferred actions, the agent dares

to choose such actions as reactance. Subsequently, the principal no longer implements controls

after observing the agent’s reactance, allowing the agent to restore the freedom of choice of

his behavior.

The intuitive explanation is as follows. As shown in Lemma 2, with a certain condition,

after observing the unpreferred action taken, the principal mixes a zero reward and a positive
7The following description of PRT is based on and quoted partially from Brehm (1966) and Brehm and Brehm
(1981).
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reward. When she decides to provide a zero reward, imposing sanctions does not affect the

agent’s second-period action. This is because if the agent takes the unpreferred action when

a sanction is imposed in the first period, he must be tolerant of being sanctioned. Under a

zero reward, the selfish agent would take the unpreferred action, independent of whether a

sanction is imposed while the motivated agent has no incentive to take the unpreferred action.

Therefore, imposing sanctions does not curtail the unpreferred action. As imposing sanctions

is costly, even if the cost is adequately small, no sanction is imposed.

Furthermore, note that the principal never mixes contracts without reactance. This is

because, without reactance, the agent who takes the unpreferred action is the selfish agent,

in which case there is no reason to offer a zero reward. Subsequently, the principal imposes

sanctions to save her payment. Therefore, even if sanctioning is costly, when it is small enough,

the principal imposes sanctions after the unpreferred action is taken. In other words, without

reactance, the principal never fails to impose sanctions. This implies that, in the equilibrium,

there would be a positive correlation between reactance and restoring freedom. In this sense,

Proposition 5 is consistent with the insights from PRT.

Finally, uncertainty in tolerance is crucial to Proposition 5. If the agent with a tolerance

is absent (i.e., γ = 0), the agent never takes y, and thus, reactance is never observed in the

equilibrium path. If the agent without a tolerance is absent (i.e, γ = 1),8 s1 = 1 is not

offered when (s2(y),m2(y)) = (0, 0) is offered with a probability. To observe this, note that

a mixed strategy equilibrium occurs if m1 = 0. If the first period reward is zero, sanctioning

in the first period is ineffective as it does not directly reduce the unpreferred action—as the

agent is known to be tolerant—and sanctioning has no role in reducing m1. Therefore, when

sanctioning is costly, not imposing sanctions is optimal at period 1. In other words, sanctioning

never (strictly) decreases over time.

8This case is excluded by Assumption 1 (iii).
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7. Related Literature

Through an experiment conducted in principal-agent setting, Falk and Kosfeld (2006) study

a hidden cost of punishment and show the negative effect of introducing it. Compared to the

case that allows only a bonus contract, they show that the amount of effort decreases when

the principal can impose a fine in addition to providing a bonus. Schnedler and Vadovic

(2011) also study a hidden cost of control in an experiment and show that the negative effect

disappears if control is legitimate. We theoretically study a similar hidden cost arising from

the principal’s option that may reduce the agent’s payoff in a dynamic agency model: We show

the condition when the principal gives up imposing sanctions as well as when the principal

suffers from such a cost.

Akin to the literature based on dynamic agencymodels where a hidden cost of controls exists,

our study is closely related to Schnedler and Vanberg (2014) and Buehler and Eschenbaum

(2020). While Schnedler and Vanberg (2014) show that the availability of payment discourages

the unpreferred actions, Buehler and Eschenbaum (2020) show that punishment can escalate

after an unpreferred action is taken.9 Our study is related to the literature of ratchet effects,

which are based on dynamic agency models where the principal’s option may influence the

agent’s actions (e.g., Freixas, Guesnerie, and Tirole, 1985; Laffont and Tirole, 1988). The

main finding in the literature is that the agent restricts his output to prevent future performance

requirement from ratcheting up.10 In contrast to extant literature, our dynamic agency model

has two features: (i) contracts that constitute both rewards as monetary incentives and sanctions

as a control device and (ii) two kinds of agent private information. We show how the availability

9As Tirole (2016) discusses, in an ordinal dynamic contract model, this logic does not always work. If the
principal wishesto reward (punish) her (un)preferred behavior more after learning that the agent is misaligned,
she also does so in the first stage. Buehler and Eschenbaum (2020) discuss that even in such a case, if the
principal cannot offer a long-term contract (i.e., committing to a future contract in the first stage), there is a
case of increasing punishment after learning the agent’s misaligned preferences. This study also assumes that
the principal cannot offer long-term contracts.

10Ex-ante private information of the agent is assumed inmost of the previous literature as well as in our model.Tan
(2020) shows that freedom of work improves the incentive for innovation without assuming ex-ante private
information.
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of imposing sanctions causes the agent’s reactance–and how his reactance influences the

principal’s payoff–as well as the type of contract the principal offers after facing the reactance.

Moreover, the informed principal models can explain the reactance behavior of the agent:

As the principal has private information, rewarding signals the principal’s information, such as

the difficulty of the task (e.g., Bénabou and Tirole, 2003; Sliwka, 2007), or the distribution of

unpreferred agents in environments where strategic complementarity matters, such as public

goods provision (e.g., van der Weele, 2012). Then, the agent(s) learn the low benefit of their

effort from the amount of reward, which demotivates their effort exertion. In our model, the

agent instead of the principal has private information.

Finally, in social psychology, the psychological reactance theory is one of the influential

hypotheses for reactance behavior (Brehm, 1966; Brehm and Brehm, 1981). In this theory,

the reactance behavior is explained as follows. If a person’s freedom to choose is threatened

or eliminated, even a preferred person engages in unpreferred behavior to restore the freedom.

Our result provides an economic rationalization of this behavior. Imposing sanctions can

be interpreted as a restriction of freedom. As shown above, because of reactance behavior,

the principal decides not to impose sanctions. Thus, the agent has restored his freedom to

choose.11 This result contrasts the work of Buehler and Eschenbaum (2020), who show that

punishment can escalate after that unfavorable action is taken.

8. Discussion and Conclusion

This study evaluates the effect of the availability of sanctions in a dynamic principal-agent

model where the agent has two kinds of private information: preference for actions and toler-

ance of sanctions. Ourmain results show that sanctioning can exacerbate ratchet effects, which,

11Kumashiro and Miyagawa (2017) provide another economic explanation of psychological reactance. They
consider an advisor-advisee relationship and show an equilibrium, wherein the advisee does the opposite of
the adviser’s recommendation. In contrast to our model, doing the opposite is not punished. In their model,
the source of reactance is that obeying the recommendation damages the advisee’s self-esteem.
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in turn, increases unpreferred actions by the motivated agent with a tolerance. Consequently,

the sanctioning option reduces the principal’s payoff even if sanctioning is costless, in some

cases. When sanctions are costly, even with a negligible cost, the principal can decrease the

sanction level after the unpreferred action is taken.

Before closing our study, we discuss several potential extensions of the current model to

investigate the robustness of our results.12

First, we assume that the decision on sanctioning is binary although the provision of rewards

is continuous. We can extend our model to include an intermediate sanctioning level, and

show that our main results are robust if the available sanction level is bounded. For this point,

boundedness of the available amount is one crucial difference between rewards and sanctions

in our model. Consequently, even if the cost of sanctioning is negligible, sanctions cannot

perfectly substitute rewards. Nevertheless, sanctioning has a role in reducing the necessary

reward to prevent the unpreferred action from being taken. In this sense, sanctions complement

the role of rewards; as Proposition 5 shows, rewards and sanctions are simultaneously offered

with a probability, but both are not offered with the complementary probability.

Second, as an alternative situation, we can consider that the principal provides a (non-

monetary) prize for a preferred action rather than a sanction for an unpreferred action. Briefly,

there is not a remarkable difference in the equilibrium behavior when a prize is introduced

instead of a sanction, namely, a prize also exacerbates reactance behavior. However, we

show that reactance behavior can be less likely under reward-prize contracts than that under

reward-sanction contracts.

Third, we note that in the basic model, if c = 0, the principal imposes sanctions (Proposi-

tion 2). This result depends on the symmetry in disutility of the principal from the unpreferred

action. The principal indisputably incurs more disutility if a motivated agent takes the unpre-

ferred action; as sanctioning increases reactance, the principal decides to not impose sanctions

in the first period.
12We provide formal discussion and proof for each extension in Supplementary Material.
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Appendix:

A. Proofs

A.1. Omitted proofs in section 3

Proof of Proposition 1. Suppose that the principal commits s1 = s2 = 0. In the second period,

the selfish agent takes x if only if m2 > u and the motivated agent never takes y.

Consider the first period. Note that the payoff of the selfish agent is u = u regardless of

m2(d1) ∈ {0, u} because he can get u by taking x when m2(d1) = u and by taking y when

m2(d1) = 0. This means that the first-period decision by the selfish agent does not depend on

the second-period contract: the selfish agent takes x if only if m1 > u.

When u > m1, we consider two cases: (1) u > m1 > u + u and (2) m1 < u + u. First, when

u > m1 > u + u, the motivated agent takes x because the second period payment is at most u.

Next, when m1 < u+u, the selfish agent takes y because u+u < u. Now, consider the strategy

that the motivated agent takes y with probability α. Then, the belief satisfying the dominance

criterion is

Py =
β

β + (1 − β)α
and Px = 0.

This implies that m2(x) = 0. We have two cases: (a) β > u and (b) β < u.

When β > u, Py > β > u. This implies that independent of the value of α, m2(y) = u

is optimal. Then, the motivated agent takes y. When β < u, if the motivated agent takes y

(i.e., α = 1), Py = β < u. Then, m2(y) = 0 is optimal for the principal. In this case, the

motivated agent has no incentive to take y. In contrast, if the motivated agent takes x (i.e.,

α = 0), Py = 1 > u, in which case, m2(y) = u. The motivated agent has an incentive to take

y, which leads to a mixed strategy equilibrium.

Next, we investigate the mixed strategy equilibrium. Suppose that the principal sets m2(y) =
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u with probability ρ and m2 = 0 with complementary probability. Then, the motivated agent’s

indifferent condition is

u + ρu = m1 ⇐⇒ ρ =
m1 − u

u

Also, by the principal’s indifferent condition,

β

β + (1 − β)α
= u ⇐⇒ α =

β

1 − β

(
1 − u

u

)
.

In summary, we can calculate the principal’s expected payoff as follows.

π(m1) =



−m1 −min{u, β} if m1 > u

−β(1 + u) − (1 − β)m1 if m1 ∈ (u + u, u)

−(1 + u) if m1 < u + u and β > u

−
β
u (1 + u) − (1 − β

u )m1 if m1 < u + u and β < u

Now, we compare the payoffs.

In the case where β < u, the principal’s equilibrium profit is min{−u − β,−β(1 + u) − (1 −

β)(u + u),− βu (1 + u)}. Note that

β(1 + u) + (1 − β)(u + u) = u + β + (1 − β)u < u + β

Thus, the principal’s equilibrium profit is min{−β(1 + u) − (1 − β)(u + u),− βu (1 + u)}. While

m1 = u + u must hold to achieve −β(1 + u) − (1 − β)(u + u), m1 = 0 must achieve − βu (1 + u).

Comparing these profits,

1. β < u+u
1/u+u : m1 = 0 is optimal for the principal. In this case, the selfish agent takes y and

the motivated agent takes y with probability α = β
1−β

(
1−u

u

)
.

2. β > u+u
1/u+u : m1 = u + u is optimal for the principal. In this case, the selfish agent takes y
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and the motivated agent takes x.

In the case where β > u, the principal’s equilibrium profit is min{−2u,−β(1 + u) − (1 −

β)(u + u),−(1 + u)}. Note that

β(1 + u) + (1 − β)(u + u) < 1 + u

Thus, the principal’s profit is min{−2u,−β(1 + u) − (1 − β)(u + u)}. While m1 = u + u must

hold to achieve −β(1+ u) − (1− β)(u+ u), m1 = u must achieve −2u. Comparing these profits,

we obtained the following results.

1. β < u−u
1−u : m1 = u + u is optimal for the principal. In this case, the selfish agent takes y

and the motivated agent takes x.

2. β > u−u
1−u : m1 = u is optimal for the principal. In this case, any type of agent takes x.

We can now show that B1 =
u+u

1/u+u < u < u−u
1−u = B2, which concludes the proof. �

In the proof of Proposition 1, we specify the equilibrium payoff of the principal. We

summarize this in the following lemma as it can be used in other proofs.

Lemma A.1. Without sanctions, the equilibrium payoff of the principal is the following.

(i) β > B2: The principal’s payoff is −2u.

(ii) β ∈ (B1, B2): The principal’s payoff is −β(1 + u) − (1 − β)(u + u) = −(u + β + (1 − β)u).

(iii) β < B1: The principal’s payoff is − βu (1 + u).
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A.2. Omitted proofs in section 4

Proof of Lemma 1. The agent’s optimal behavior is summarized as follows:

d2 =


x if m2 > u − s2a,

y if m2 6 u − s2a.

Therefore, the motivated agent never takes y. Next, consider the selfish agent. Suppose that

s2 = 1. Then, the selfish but intolerant agent never takes y. In this case, the principal’s optimal

payment is either m2 = v1 or m2 = 0. To observe this, let m2 > v1. In this case, as each type

of agent takes x, reducing the amount of payment is a profitable deviation for the principal. If

m2 ∈ (0,m2), as the selfish agent with a tolerance takes y, and the other type takes x, reducing

the amount of payment is also a profitable deviation for the principal. Next, we show that

there is no equilibrium in which the selfish agent with a tolerance takes y with a positive

probability when m2 = v1. If this is the case, the principal offers m2 = v1 + ε, in which case,

the selfish agent with a tolerance definitely takes x. If ε > 0 is adequately small, this deviation

is profitable. This shows that the principal’s optimal payment is either m2 = v1 or m2 = 0. If

m2 = v1, the principal’s payoff is −v1; and if m2 = 0, the payoff is (1 + c)P∗d1
.

Suppose that s2 = 0. In this case, same as above, we can show that the principal’s optimal

payment is either m2 = u or m2 = 0, in which case, if m2 = u, the principal’s payoff is −u. If

m2 = 0, the principal’s payoff is Pd1 .

As u > v1 = u − a, (s1,m1) = (0, u) is never optimal, which completes the proof. �

Proof of Lemma 2. First note that by Lemma 1, (s2,m2) ∈ {(1, 0), (0, 0), (1, v1)}. Then, the

second-period payoff is either u − a (taking y when s2 = 1), u (taking y when s2 = 0 ), 0

(taking x when m2 = 0), or v1 (taking x when m2 = v1).

Consider the intolerant agent. By taking x, the payoff of the intolerant agent is at leastm1 > 0.

In contrast, by taking y, the payoff of the agent is at most u − a︸︷︷︸
1st p. util.

+max{u, v1}︸       ︷︷       ︸
2nd p. util.

< v3 + u < 0.
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Therefore, for the intolerant agent, taking x is optimal.

We then consider the behavior of the agent with a tolerance.

Case 1. Suppose that m1 > v1 + v2. Consider the motivated agent with a tolerance. Such an

agent never takes y in the second period as it would incur high costs, and the game

ends in the second period. Then, as m2 6 v1, the expected payoff of taking y in the

first period is at most v2 + v1 < v1 < m1. Therefore, he takes x in the first period.

Next, if d1 = y at the equilibrium, this implies that u = u, and Py = 1. This signifies

that (s2,m2) = (0, 0) is never optimal if d1 = y.

Consider the selfish agent with a tolerance. Note that if s2 = 1, the selfish agent with

a tolerance is indifferent between m2 = v1 and m2 = 0. This is because he takes x and

receives m2 = v1 when m2 = v1, whereas he takes y and gains v1 when m2 = 0. Then,

the expected payoff of taking y in the first stage is v1 + v1 = 2v1.

In contrast, if he takes x in the first stage, P∗x = γβ and Px = β. As we assume

(1 + c)γ < 1, (1 + c)P∗x < Px . Next, by Lemma 1, s2 = 1. Then, the expected payoff

of taking y in the first stage is m1 + v1. Therefore, the selfish agent with a tolerance

takes x if only if m1 + v1 > 2v1 ⇐⇒ m1 > v1.

Case 2. Consider the case that m1 < v1 + v2.

Consider the selfish agent with a tolerance. As shown in Case 1, if s2 = 1, the second

period payoff of the agent is v1. If s2 = 0, such an agent takes y, following which

the second-period payoff is u. Thus, the second period payoff of the agent is at least

v1. Therefore, if the selfish agent with a tolerance takes y, his total payoff is at least

v1 + v1 = 2v1. In contrast, the total payoff of taking x is at most m1 + u. Note that

m1+u < v1+v2+u = v1+v1+u < 2v1. Then, the selfish agent with a tolerance takes y.

This and the dominance criterion imply that P∗x = 0 < Px and (s2(x),m2(x)) = (1, 0).

Next, we focus on the equilibrium in which the motivated agent with a tolerance takes
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y with probability α ∈ [0, 1]. According to Bayes rule, we have

P∗y = Py =
β

β + α(1 − β)
.

Then, if c > 0, as per Lemma 1, (s2(y),m2(y)) = (1, 0) is never taken. If c = 0, in the

second period, (s2(y),m2(y)) = (1, 0) and (0, 0) are indifferent for any α. Therefore,

without loss of generality, we only focus on (s2(y),m2(y)) = (0, 0) and (1, v1).

We now have two cases.

a) β > v1: Note that P∗y = Py =
β

β+α(1−β) > β > v1. Then, using Lemma 1,

m2(y) = v1; thus, the motivated agent with a tolerance prefers y to x if only if

v1 + v2 > m1, which is satisfied by assumption.

b) β < v1: If α = 1, P∗y = Py = β < v1. Then, m2(y) = 0, which implies no benefit

of taking y for the motivated agent; thus, α = 0 is the best response. In contrast,

if α = 0, P∗y = Py = 1 > v1. Then, the motivated agent with a tolerance prefers

to take y, which implies α > 0. Hence, we must consider a mixed strategy

equilibrium.

Consider a strategy that the principal mixes (s2(y),m2(y)) = (1, v1) with proba-

bility q and (s2(y),m2(y)) = (0, 0) with probability 1 − q. Then, the agent with

(u, a) = (u, a) is indifferent between taking x and y if

m1 = v2 + qv1 ⇐⇒ q =
m1 − v2
v1

.

Meanwhile, by Lemma 1, the principal prefers to mix (s2,m2(y)) if only if

Py =
β

β + α(1 − β)
= v1 ⇐⇒ α =

β

1 − β
1 − v1
v1

.
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In summary, as v1 > v1 − a > v1 + u − a = v1 + v2, the agent with type (u, a) takes x if only if

m1 >


v1 if β > min{(1 + c)γβ, v1},

v1 − a if β < min{(1 + c)γβ, v1}.

Furthermore, the motivated agent with a tolerance and the principal behave as the statement of

the proposition describes. �

Proof of Lemma 3. Note that u > v1 = u − a > v1 + u as u < 0.

(1) m1 > u.

Then, as m2 6 v1, the motivated agent never takes y.

Consider the selfish agent. Suppose that some types of agents take y at the equilibrium.

Then, Py = 1 and Px 6 β. Using Lemma 1, s2(y) = 1. Suppose that m2(y) = 0; then, for

the selfish agent without a tolerance, the expected payoff of taking y is u 6 m1. This implies

that the selfish agent without a tolerance never takes y and P∗y = 1. Next, m2(y) = v1,

which is a contradiction. Therefore, (s2(y),m2(y)) = (1, v1). Then, the expected payoff of

taking y is u + v1.

Suppose that s2(x) = 0; the expected payoff of taking x is m1 + u. Hence, taking x is

optimal. Suppose that s2(x) = 1; for the selfish agent with a tolerance, the expected payoff

of taking x is m1 + v1. Hence, taking x is optimal. Thus, if some type takes y at the

equilibrium, the agent is selfish without a tolerance. Then, P∗y = 0 < Py = 1, and therefore

(s2(y),m2(y)) = (1, 0), which is a contradiction.

Consequently, there is no incentive to take x for any type. Now, we check that taking x for

each type is an equilibrium behavior. To observe this, set off-path beliefs as P∗y = P∗x and

Py = Px . Then, the second-period behavior of the principal is the same, taking x for each

type.
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(2) Suppose that m1 ∈ (v1 + u, u). Then, it is apparent that the motivated agent does not take

y since the payoff of taking y is at most u + v1 < m1. This implies that Py = 1. Thus,

(s2(y),m2(y)) , (0, 0)

Note that if the selfish agent takes y, P∗y = γ, Py = 1, and Px = P∗x = 0. Then, if

(s2(x),m2(x)) = (1, 0), and (s2(y),m2(y)) ∈ {(1, v1), (1, 0)}, for u = u, taking y is optimal,

and this is the focused behavior.

We now show that there is no equilibrium in which the selfish agent takes x. To this end,

we have the following four cases.

Case (2-1): Consider the case that (s2(x),m2(x)) = (s2(y),m2(y)). Here, in period 1,

taking y is better than taking x if only if u > m1. Thus, given that m1, the selfish agent

takes y.

Case (2-2): Consider the case that (s2(y),m2(y)) = (1, v1) and (s2(x),m2(x)) = (1, 0).

Then, taking y is more likely to be preferable for u = u. The selfish agent takes y.

Case (2-3): Consider the case that (s2(y),m2(y)) = (1, 0) and (s2(x),m2(x)) = (1, v1).

Then, after taking y, in the second period, the selfish agent with a tolerance takes y. In

contrast, after taking x, in the second period, this agent takes x. Then, for the selfish agent

with a tolerance, taking y is better than taking x if only if u + v1 > m1 + v1. Thus, given

that m1, the selfish agent with a tolerance takes y. This implies that P∗x = 0 < v∗. Using

Lemma 1, m2(x) = 0, which is a contradiction.

Case (2-4): Consider the case that (s2(y),m2(y)) ∈ {(1, 0), (1, v1)} and (s2(x),m2(x)) =

(0, 0). Consider the selfish agent with a tolerance. Then, for him, the payoff of taking y

is u + v1 while that of x is m1 + u. Therefore, the selfish agent with a tolerance takes y if

only if m1 6 v1.

Consider m1 < v1. As the selfish agent with a tolerance takes y, consider the case that

the selfish agent without a tolerance takes x. Then, Px > 0 and P∗x = 0. Using Lemma 1,
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(s2(x),m2(x)) = (1, 0), which is a contradiction.

Consider m1 > v1. We examine the selfish agent without a tolerance. For the agent, the

payoff of taking y is at most u + v1, while that of taking x is m1 + u. Then, he takes x.

Here, Px = β and P∗x = γβ. As we assume that (1 + c)γ < 1, P∗x < Px . Using Lemma 1,

(s2(x),m2(x)) = (1, 0), which is a contradiction.

(3) Suppose that m1 < v1 + u.

Consider the selfish agent with a tolerance. For him, the payoff of taking y is u+ v1, while

that of x is m1 + u. Therefore, the selfish agent with a tolerance takes y if only if m1 6 v1.

As v1 + u < v1, the selfish agent with a tolerance takes y. Then, P∗x = 0. Suppose that

there is an equilibrium in which the selfish agent without a tolerance takes x. Then, as

Px > 0 = P∗x(1 + c), (s2(x),m2(x)) = (1, 0). In this case, for the selfish agent without a

tolerance, the payoff of taking y is at least u, while that of taking x is m1. As u > m1,

taking y is optimal, which is a contradiction. Therefore, the selfish agent takes y, which

implies that Px = P∗x = 0 and P∗y 6 γ.

(3a) Assume that v1 > (1 + c)γ.

Note that Px = P∗x = 0 implies that (s2(x),m2(x)) ∈ {(0, 0), (1, 0)}. As the motivated

agent takes x in the second period, he is indifferent between these second period

contracts. We now show that the motivated agent takes x. To this end, suppose that,

by contradiction, there is an equilibrium in which the motivated agent takes y. Note

that the payoff of taking x is m1. Thus, if taking y is optimal for the motivated agent,

(s2(y),m2(y)) = (1, v1) with a probability. In contrast, as P∗y 6 γ and (1 + c)γ < v1,

using Lemma 1, (s2(y),m2(y)) , (1, v1), which is a contradiction. Therefore, for the

motivated agent, taking x is the unique equilibrium behavior.

(3b) Assume that v1 < (1 + c)γ.

We show that there is no pure strategy equilibrium: Suppose that the principal takes
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a pure strategy in the second period. If the motivated agent takes x, (1 + c)P∗y =

(1 + c)γ > v1 and Py = 1 > v1. Then, m2(y) = v1. However, in this case, for type

u = u, the payoff of taking x is m1, while that of taking y is u + m2(y) = u + v1.

Therefore, taking y is optimal. On the contrary, if the motivated agent takes y,

P∗y = βγ; thus, (1 + c)P∗y < v1. Next, m2(y) = 0. Consequently, taking x is optimal.

Hence, we need to consider a mixed strategy equilibrium. As per Lemma 1, in the

second period, the principal mixes m2 if only if (1 + c)P∗y = v1 or Py = v1. Let α be

the probability that the motivated agent takes y. Then,

Py =
β

β + (1 − β)α
, (1 + c)P∗y =

(1 + c)βγ
β + (1 − β)α

.

Aswe assume that (1+c)γ < 1, Py > (1+c)P∗y for any α. By Lemma 1, in the second

period, the principal mixes (s2,m2) = (1, v1) and (1, 0) if only if (1 + c)P∗y = v1. To

satisfy this equality, let α be the probability that the motivated agent takes y. Then,

(1 + c)P∗y =
(1 + c)βγ
β + (1 − β)α

= v1.

By solving the equality,

α =
β

1 − β

(
(1 + c)γ

v1
− 1

)
,

which is the focused probability. Since βγ < v1 < (1 + c)γ, α ∈ (0, 1).

Consider the agent’s behavior. The motivated agent should be indifferent between

taking x and y. Let q be the probability that m2(y) = v1. Note that the motivated

does not take y in the second period. Then, the expected payoff of taking x equals
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that of y if only if qv1 + u = m1. By solving this equality,

q =
m1 − u
v1

,

which is the focused probability.

�

Proof of Lemma 4. (a) Suppose that s1 = 1. According to Lemma 2, if m1 > v1, as the agent

with any type takes x, P∗x = γβ and Px = β. Then, using Lemma 1, the principal’s payoff in

the second period is −min{(1 + c)γβ, β, v1}. As (1 + c)γβ < β, −min{(1 + c)γβ, β, v1} =

−min{(1 + c)γβ, v1}.

If m1 ∈ (v1+v2, v1), as per Lemma 2, the selfish agent with a tolerance takes y, and the others

take x. Then, P∗y = Py = 1 > Px > P∗x = 0. In the second period, using Lemma 1, the principal

sets (s2(y),m2(y)) = (1, v1), and (s2(x),m2(x)) = (1, 0). Then, in period 2, the agent with any

type takes x. As P((u, a) = (u, a)) = γβ, the principal’s payoff is −γβ(1+ c+ v1) − (1− γβ)m1.

If m1 ∈ [0, v1 + v2) and v1 < β, according to Lemma 2 (1), (2), and (3a), the agent with a

tolerance takes y, and the others take x. Then, P∗y = Py = β > v1 and Px > P∗x = 0. In the

second period, as per Lemma 1, the principal sets (s2(y),m2(y)) = (1, v1), and (s2(x),m2(x)) =

(1, 0). Then, in period 2, the agent with any type takes x. As P(a = a) = γ, the principal’s

payoff is −γ(1 + c + v1) − (1 − γ)m1.

In contrast, if m1 ∈ [0, v1 + v2) and v1 > β, according to Lemma 2 (1), (2), and (3b), the

motivated agent with a tolerance takes y with probability β
1−β

1−v1
v1

while the others’ behaviors

are the same. Then, the principal’s payoff is

−

(
βγ + (1 − β)γ

β

1 − β
1 − v1
v1

)
(1 + c + v1) −

(
1 − βγ − (1 − β)γ

β

1 − β
1 − v1
v1

)
m1

= −
γβ

v1
(1 + c + v1) −

(
1 −

γβ

v1

)
m1.
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(b) Suppose that s1 = 0. Using Lemma 3, if m1 > u, any type of agent takes x in the first

period. Then, the principal pays m1 with probability 1. As in case (a), according to Lemma 1,

the principal’s expected payoff in the second period is −min{(1 + c)γβ, v1}.

Suppose that m1 ∈ (v1+u, u), or m1 < v1+u and v1 > (1+c)γ. Then, using Lemma 3 (1) and

(2a), in the first period, the selfish agent takes y, and the motivated agent takes x. This implies

that Py = 1 > P∗y = γ and Px = P∗x = 0. Then, the principal pays m1 with probability 1 − β,

in which case, the principal sets (s2,m2(x)) = (0, 0) and no type of agent takes y in the second

period. On the contrary, with probability β, the agent takes y, and the principal receives payoff

−1, in which case, in the second period, the principal’s expected payoff is −min{(1 + c)γ, v1}.

Next, consider m1 < v1 + u and v1 > (1 + c)γ. According to Lemma 3(2b), with probability

β + (1 − β)
(

β
1−β

(
(1+c)γ
v1
− 1

))
, the agent takes y. Then, in the second period, (s2(y),m2(y)) =

(1, v1) with probability
m1−u
v1

and (s2(y),m2(y)) = (1, 0) with the complementary probability. If

(s2(y),m2(y)) = (1, 0), with probability P∗y, the agent takes y. Note that as shown in the proof

of Lemma 3(2b), (1 + c)P∗y = v1.

On the contrary, in the first period, with probability (1− β)
(
1 − β

1−β

(
(1+c)γ
v1
− 1

))
, the agent

takes x and then, the principal pays m1. In summary, the principal’s payoff is

−

(
β + (1 − β)

(
β

1 − β

(
(1 + c)γ

v1
− 1

)))
(1 + v1)

−(1 − β)
(
1 −

β

1 − β

(
(1 + c)γ

v1
− 1

))
m1

= −β
(1 + c)γ

v1
(1 + v1) −

(
1 − β

(1 + c)γ
v1

)
m1.

�

Proof of Proposition 2. Suppose that v1 > β. By Lemma 4, if c = 0, the principal’s expected
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payoff is

π(m1, 1) =



−m1 − γβ if m1 > v1

−γβ(1 + v1) − (1 − γβ)m1 if m1 ∈ (v1 + v2, v1)

−γ(1 + v1) − (1 − γ)m1 if m1 ∈ [0, v1 + v2) and v1 < β

−
γβ
v1
(1 + v1) −

(
1 − γβ

v1

)
m1 if m1 ∈ [0, v1 + v2) and v1 > β.

π(m1, 0) =



−m1 − γβ if m1 > u

−β(1 +min{v1, γ}) − (1 − β)m1 if m1 ∈ (v1 + u, u)

−β(1 + γ) − (1 − β)m1 if m1 ∈ [0, v1 + u) and v1 > γ

−
γβ
v1
(1 + v1) −

(
1 − γβ

v1

)
m1 if m1 ∈ [0, v1 + u) and v1 < γ.

Note that −γβ(1+ v1) − (1− γβ)(v1 + v2) = −v1 − γβ− (1− γβ)v2 and −v1 − γβ− (1− γβ)v2 >

−v1 − γβ as v2 < 0. Then, if s = 1, the principal’s maximum payoff is

π(s1 = 1) =


max{−v1 − γβ − (1 − γβ)v2,−γ(1 + v1)} if v1 < β

max{−v1 − γβ − (1 − γβ)v2,−
γβ
v1
(1 + v1)} if v1 > β

If s1 = 0, the principal’s maximum payoff is

π(s1 = 0) =


max{u − γβ,−β(1 + γ)} if v1 > γ

max{−v1 − β − (1 − β)u,−γβv1
(1 + v1)} if v1 < γ

We have four cases.

(1) v1 < β and v1 > γ: Then, we have that −γ(1 + v1) > −β(1 + γ). By v2 < 0 and u > v1,

we also have that −v1 − γβ − (1 − γβ)v2 > −u − γβ. This implies that π(s1 = 1) > π(s1 = 0).

(2) v1 < β and v1 < γ: Note that as v2 = u − a, and γ, β ∈ (0, 1), one can show that

−v1 − γβ − (1 − γβ)v2 > −v1 − β − (1 − β)u. Moreover, as β > v1, −γ(1 + v1) > −
β
v1
γ(1 + v1).

Therefore, π(s1 = 1) > π(s1 = 0).

(3) v1 > β and v1 > γ. Then, as v1 > γ, − γ
v1
β(1 + v1) > −β(1 + γ). We also note that
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−v1 − γβ − (1 − γβ)v2 > −u − γβ. This implies that π(s1 = 1) > π(s1 = 0).

(4) v1 > β and v1 < γ. As −v1−γβ−(1−γβ)v2 > −v1− β−(1− β)u, π(s1 = 1) > π(s1 = 0).

In contrast, if v1 + γβ + (1 − γβ)v2 >
γβ
v1
(1 + v1), π(s1 = 1) = π(s1 = 0).

Therefore, in any case, s1 = 1 is optimal. Moreover, by case (4), s1 = 0 is optimal if and

only if γ > v1 > β and v1 + γβ + (1 − γβ)v2 >
γβ
v1
(1 + v1). Moreover, as P∗d1

= Pr((u, a) =

(u, a) | d1) 6 Pr(u = u | d1) = Pd1 , in the second stage, s2 = 1 is optimal. �

A.3. Omitted Proofs in section 5

Proof of Lemma 5. By Proposition 2, when sanctions are available for the principal, s1 = s2 =

1 is optimal. In this case, the principal’s payoff is

π(m1, 1) =



−m1 −min{γβ, v1} if m1 > v1

−γβ(1 + v1) − (1 − γβ)m1 if m1 ∈ (v1 + v2,V)

−γ(1 + v1) − (1 − γ)m1 if m1 ∈ [0, v1 + v2) and v1 < β

−
γβ
v1
(1 + v1) −

(
1 − γβ

v1

)
m1 if m1 ∈ [0, v1 + v2) and v1 > β.

We have two cases.

(a) β > v1: In this case, the principal’s optimal payoff is−min{v1+γβ+(1−γβ)v2, γ(1+v1)}.

By Lemma 2, the motivated agent with a tolerance takes y with probability 1 if m1 < v1 + v2.

To implement this agent’s behavior in the equilibrium, the principal sets m1 = 0, in which case,

the payoff is −γ(1 + v1). Thus, the motivated agent with a tolerance takes y with a positive

probability in the equilibrium if and only if v1+v2
1+v1−β(1−v2)

> γ.

(b) β < v1: In this case, the principal’s optimal payoff is −min{v1 +min{γβ, v1}, v1 + γβ +

(1−γβ)v2,
γβ
v1
(1+ v1)}. Note that as β < v1, v1+min{γβ, v1} = v1+γβ > v1+γβ+ (1−γβ)v2.

Thus, the principal’s optimal payoff is −min{v1 + γβ + (1 − γβ)v2,
γβ
v1
(1 + v1)}.

By Lemma 2, the motivated agent with a tolerance takes y with probability β
1−β

1−v1
v1

if and

only if m1 < v1 + v2. To implement this agent’s behavior in the equilibrium, the principal sets
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m1 = 0, in which case, the payoff is −γβv1
(1 + v1). Thus, the motivated agent with a tolerance

takes y with probability β
1−β

1−v1
v1

in the unique equilibrium if v1+v2
1
v1
+v2

> βγ. �

Proof of Proposition 3. Without the sanctioning option, when the motivated agent takes y, the

probability is β
1−β

1−u
u as shown in the proof of Proposition 1. Thus, Rns =

β
1−β

1−u
u .

Using Lemma 5, when sanctioning is available, the motivated agent takes y. The probability

is 1 when β > v1; otherwise, it is β
1−β

1−v1
v1

. As the motivated agent without a tolerance never

takestakes y, the total probability that the motivated agent takes y is γ when β > v1; otherwise,

the probability is γ β
1−β

1−v1
v1

. This completes the proof. �

Proof of Proposition 4. The following lemmata summarize the comparison of πs and πns. The

proof of the proposition is an immediate corollary of Lemma A.3 (1).

Lemma A.2. (1) If πns > πs, πns = −
β
u (1 + u). (2) If γ < v1, πs > πns. (3) If β > v1, πs > πns.

Lemma A.3. Consider the case that β < min{B1, v1}.

(1) Suppose that γβ < v1+v2
1/v1+v2

and β < B1. Then, πns > πs if and only if γ > 1+u
u

v1
1+v1

.

(2) Suppose that v1+v2
1/v1+v2

< γβ. Then, πns > πs if and only if βu (1 + u) < γβ(1 − v2) + v1 + v2.

Proof of Lemma A.2. (1) If the principal commits s1 = s2 = 0, by Lemma A.1, her payoff is

−min{ βu (1 + u), β(1 + u) + (1 − β)(u + u), 2u}. In contrast, without long-term commitment, if

s1 = 0, by Lemma 4, the principal’s payoff is no less than−min{u+v1, β(1+v1)+(1−β)(v1+u)}.

Note that u+ v1 < 2u, and β(1+ v1)+ (1− β)(v1 + u) < β(1+ u)+ (1− β)(u+ u). This implies

that πns > πs only if πns = −
β
u (1 + u). By Lemma A.1, πns = −

β
u (1 + u) if and only if β < B1.

This implies that if β > B1, πs > πns.

(2) Suppose that γ < v1. Suppose by contradiction that πs < πns. Then, as shown above,

πns = −
β
u (1 + u). By Lemma 4, as v1 > γ, if the principal sets (s1,m1) = (0, 0), her expected

payoff is −β(1 + γ). Then, as γ < v1 < u < 1, πs = −β(1 + v1) > −
β
u (1 + u) > πns. Thus,
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πs > πns.

(3) Suppose that β > v1. By (1), we focus on the case that πns = −
β
u (1 + u). Now consider

the case that s1 = 1, and m1 = v1, in which case, π(v1, 1) = −v1 −min{γβ, v1}.

If γβ < v1, π(v1, 1) = −v1 − γβ. Then, πns > π(v1, 1) if and only if β
(

1+u
u − γ

)
< v1. As

β > v1, this inequality implies that 1 < 1/u < γ, which is a contradiction.

If γβ > v1, π(v1, 1) = 2v1. Then, πns > π(v1, 1) if and only if β 1+u
u < 2v1. As β > v1, this

inequality implies that 1+u
u < 2, which is contradictory to u < 1.

Therefore, in each case, πs > π(v1, 1) > πns. �

Proof of Lemma A.3. As we assume that β < B1, πns = −
β
u (1 + u) by Lemma A.1. Also by

β < v1, and using Lemma 4, we can summarize the payoff as follows:

πs =


−
γβ
v1
(1 + v1) if γβ < v1+v2

1/v1+v2

−γβ(1 + v1) − (1 − γβ)(v1 + v2) if γβ ∈
(
v1+v2

1/v1+v2
, v1−v2

1−v2

)
−2v1 if γβ > v1−v2

1−v2
.

Note that we can show that v1+v2
1/v1+v2

< v1 <
v1−v2
1−v2

. Note also that as we assume β < v1, γβ > v1−v2
1−v2

implies that γ > v1−v2
v1−v1v2

> 1 as v2 < 0 and v1 < 1. Thus, we focus on whether γβ > v1+v2
1/v1+v2

holds. Then, the statement of the lemma immediately follows by comparing πs and πns. �

�
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A.4. Omitted proof in section 6

Proof of Proposition 5. Suppose that v1 > β. Let γ → 0. Then, by Lemma 4,

π(m1, 1) =


−m1 if m1 > v1,

−m1 if m1 ∈ (v1 + v2, v1),

−m1 if m1 ∈ [0, v1 + v2),

π(m1, 0) =


−m1 if m1 > u,

−β − (1 − β)m1 if m1 ∈ (v1 + u, u),

−β − (1 − β)m1 if m1 ∈ [0, v1 + u).

Then, setting (s1,m1) = (1, 0)maximizes the principal’s expected payoff. Next, using Lemma 2

(3b), the principal mixes (s2(y),m2(y)) = (1, v1) and (s2(y),m2(y)) = (0, 0). Moreover, as per

Lemma 2 (3b), as (u, a) = (u, a) takes y, P∗x = 0. Also, through Lemma 1, (s2(x),m2(x)) =

(1, 0). �
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I. Intermediate Sanctioning Level

This section deals with the case that sanctioning can take an arbitrary value in [0, s̄]. We will

show that with some additional assumptions, when (1) c = 0 and β is small enough, or (2)

c > 0 and γ is sufficiently small, similar results to the basic model hold even in this extension.

Suppose that s̄ > u/a. Then, s1 = s2 = u/a and m1 = m2 = 0 is optimal because with

this contract, each agent takes x, and the principal pays nothing and bears no cost. Therefore,

consider the case that s̄ < u/a. Further, we assume that u/a < s̄ < u/a. We normalize s̄ = 1

and assume Assumption 1.

Consider the second period. Note that the agent with u = u never takes y and the agent with

u = u takes y if only if u − a · s2 > m2. Now we have three cases. (1) If all types take x,

u− as2 6 m2. As each type of agent never takes x, the size of s2 does not affect the principal’s

payoff. Then, s2 = 1 is optimal, in which case, m2 = u − a = v1.

(2) If the selfish agent without a tolerance takes x but the selfish agent with a tolerance takes

y with such s2, the principal’s continuation payoff is

−(P∗d1
(1 + cs2) + (1 − P∗d1

)m2).

and u − as2 > m2 > u − as2. In this case, we can say that s2 = 0 is never optimal. If it is the

case, m2 > u. Then, as 1 > u, the principal’s payoff is at most −u, which is less than that in
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case (1). Then, the pair of s2 = u/a and m2 = 0 is optimal. Otherwise, s2 < u/a, in which

case, m2 = u − as2 is optimal. Then, the principal’s payoff is linear in s2, and then, a corner

solution is optimal. As the corner solution is s2 ∈ {0, u/a}, we are done.

(3) If the selfish agent without a tolerance takes y, the selfish agent with a tolerance also

takes y, in which case, m2 = s2 = 0 is optimal. In this case, the principal’s payoff is Pd1 .

Using this result, the optimal contract in the second period is summarized as follows.

Lemma I.1. The second period behavior in each equilibrium of the continuation game is

characterized as follows: the principal’s behavior:

(a) If (1 + c u
a )P
∗
d1
= min{(1 + c u

a )P
∗
d1
, Pd1, v1}, (s2,m2) = (

u
a, 0) is optimal.

(b) If Pd1 = min{(1 + c u
a )P
∗
d1
, Pd1, v1}, (s2,m2) = (0, 0) is optimal.

(c) If v1 = min{(1 + c u
a )P
∗
d1
, Pd1, v1}, (s2,m2) = (1, v1) is optimal.

Now consider the first-period behavior. Assume the following off-path belief: if all types

take x, P∗y = 1, and if all types take y, Px = 0. Additionally, to simplify the discussion, we

assume that 2u < a, and β < v1.

First, we consider the case that c = 0.

Proposition I.1. Assume that st ∈ [0, 1] and Assumption 1. If c = 0 and β is sufficiently small,

in the optimal contract, (s1,m1) = (1, 0) is offered, and the motivated agent with a tolerance

takes y with probability β
1−β

1−v1
v1

.

Combining this proposition with Lemma I.1, the offered contract and agent’s behaviors

are almost the same as that in the basic model when β is sufficiently small. Therefore, the

discussions of Section 5 that hold when β is sufficiently small continue to hold even when st

can take an intermediate value in [0, 1].

Proof of Proposition I.1. We focus on the agent’s behaviors taken in the first period, and

provide the maximal payoff of each case. The possible cases are the following: (a) all types

of agents take x, (b) only the selfish agent with a tolerance takes y, (c) only the selfish agent
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takes y, (d) only the agent with a tolerance takes y, (e) the agent other than the motivated agent

without a tolerance takes y, and (f) all types take y. We show that when β is small enough,

(d) is implemented in the optimal contract.

(a) Suppose that each type takes x. In this case, as P∗y = Py = 1, (s2(y),m2(y)) = (1, v1). On

the other hand, P∗x = γβ and Px = β. Then, as β < v1, (s2(x),m2(x)) = (ua, 0). When the

selfish agent with a tolerance takes x, u− a u
a +m1 > u− as1+ v1 should be satisfied. Other

types take x if the selfish agent with a tolerance take x. Thus, s1 = 1, and m1 = v1−a(1− u
a )

in the optimal contract. Then, the principal’s payoff is

−(βγ + v1 − a(1 −
u
a
))

(b) Suppose that (u, a) = (u, a) takes y in the equilibrium. In this case, P∗y = Py = 1 and

P∗x = 0. Thus, (s2(y),m2(y)) = (1, v1), and (s2(x),m2(x)) = (ua, 0). Then, m1 > u−as1+ v1

and m1 > u− as1+ v1 are satisfied. Therefore, in the optimal contract s1 = 1, m1 = v1+ v2,

in which case, the principal’s payoff is

−βγ(1 + v1) − (1 − βγ)(v1 + v2).

(c) Suppose that only the selfish agent takes y. In this case,Uy(u, a)−Ux(u, a)−m1+u−as1 >

0 > Uy(u, a)−Ux(u, a)−m1+u− as1, where Ud(u, a) is the second period expected payoff

for type (u, a) after taking d. Suppose that s1 > 0. In this case, type (u, a) (selfish agent

with a tolerance) is more likely to take y than type (u, a) (selfish agent without a tolerance),

Py = 1, P∗y > γ, and P∗x = 0. Then, (s2(x),m2(x)) = (ua, 0), m2(y) = 0, Ux(u, a) = 0 and

Ux(u, a) = v1 for each (u, a) ∈ {(u, a), (u, a)}. This implies that s1 6
u−u
a−a ∈ (0, 1).

13 Now,

13Note that u−u

a−a < 1 is implied by the assumption that u − a > u − a.
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the principal’s expected payoff is the following.

−β(γ + (1 − γ)q)(1 + v1) − ((1 − β) + β(1 − γ)(1 − q))m1),

where q is the probability that type (u, a) takes y. Then, s1 =
u−u
a−a , and m1 = v1 + u− as1 =

v1 + u − as1 > v1 + v2. In this case, the principal’s expected payoff is strictly less than that

in case (b). Therefore, this case is never optimal.

If s1 = 0, it is possible that the selfish agent with a tolerance takes x with a probability.

Now the principal’s payoff is

−Q(1 + Y ) − (1 −Q)(m1 + X) = −(QY + (1 −Q)X +Q + (1 −Q)m1),

whereQ = β(γq′+(1−γ)q) is the probability that the agent takes y, q′ is the probability that

(u, a) takes y, X = min{P∗x, v1}, and Y = min{P∗y, v1}. We have four cases. If X = Y = v1,

m2(y) = m2(x) = v1. Then, if the selfish agent with a tolerance takes x, m1 > u. Then, as

β < v1, the payoff is less than that in case (a). Otherwise, the selfish agent takes y with

probability 1, in which case, P∗x = 0, which is a contradiction that X = v1.

Also, if X = P∗x and Y = P∗y, m2(x) = m2(y) = 0. If m1 > u, as QY + (1 − Q)X = γβ,

then, the payoff is also less than that in case (a). Then, m2 < u, in which case the selfish

agent takes y with probability 1. Now the principal’s payoff is at most −β(1 + γ + v1).

This value is strictly less than the payoff that is obtained in case (d).

If X = v1 and Y = P∗y, m2(y) = 0 and m2(x) = v1. As the selfish agent without a tolerance

takes y, u − v1 > m1. Now the selfish agent with a tolerance takes y with probability 1.

This implies that P∗x = 0, which is contradictory to X = v1.

Lastly, if X = P∗x and Y = v1, m2(y) = v1 and m2(x) = 0. Then, as the motivated agent

with a tolerance takes x, m1 > v1 + v2. Also, as (u, a) takes y, u + v1 > m1 + u(1 − a
a ).

Therefore, the selfish agent without a tolerance takes y with probability 1. If u + v1 =
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m1 + u(1 − a
a ) ⇐⇒ m1 = v1 + u a

a , (u, a) takes y with probability q′. Now the principal’s

payoff is

−Q(1 + v1) − (1 −Q)(v1 + u
a
a
+ P∗x) = −Q(1 + v1) − (1 −Q)(v1 + u

a
a
) − βγ(1 − q′)

= −Qv1 − (1 −Q)(v1 + u
a
a
) − β.

Then, this payoff is strictly less than that in case (a). Therefore, this case is never optimal.

Now consider the case that m1 < v1 + u a
a , in which case, m1 = v1 + v2 is optimal, and the

principal’s payoff is

−β(1 + v1) − (1 − β)(v1 + v2),

which is strictly less than that in case (b). In summary, this case is never optimal.

(d) Suppose that only the agent with a tolerance takes y. Then, the following inequality must

hold.

Uy(u, a) −Ux(u, a) − m1 + u − as1 < 0 6 Uy(u, a) −Ux(u, a) − m1 + u − as1, (1)

where Ud(u, a) is the second period expected payoff for type (u, a) after taking d. In this

case, it also holds that P∗x = 0, and thus s2(x) = 1 is optimal. Then, Ux(u, a) = 0 for each

(u, a) ∈ {(u, a), (u, a)}. As the motivated agent with a tolerance takes y, it also holds that

m2(y) = v1 with a probability. As m2(y) = v1 with a probability, v1 6 P∗y should hold.

Then, the principal’s expected payoff is the following.

−γ(β + (1 − β)q)(1 + v1) − (γ(1 − β)(1 − q) + (1 − γ))m1,

where q is the probability that type (u, a) takes y. In this case, (s1,m1) = (1, 0) is optimal,
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and asUy(u, a) 6 u, (1) is satisfied. Now, by the same logic as the case in Lemma 2, we can

show that q = β
1−β

1−v1
v1

is a unique equilibrium. Then, the expected payoff is − βγv1
(1 + v1).

(e) Suppose that the agent with type (u, a) , (u, a) takes y. Then, P∗x = 0 and m2(y) = v1

with a probability. Also, as the selfish agent without a tolerance takes y, the following

inequality holds.

Uy(u, a) + u − as1 > m1.

AsUy(u, a) 6 u, and 2u < a, s1 < 1. Consider the case that s1 > 0. Then, as the motivated

agent without a tolerance takes x, m1 > Uy(u, a) + u − as1. If Uy(u, a) + u − as1 > 0,

m1 = Uy(u, a) + u − as1. Otherwise, m1 = 0. In this case, as the payoff of taking y for

types (u, a) (selfish, intolerant) and (u, a) (motivated, tolerant) is greater than that for (u, a)

(motivated, intolerant), if m1 > 0, an increase in s1 decreases m1 without changing all

types’ behaviors. Then, in the optimal contract, m1 = 0. As m2(y) = v1 with a probability,

v1 6 P∗y should hold. Then, the principal’s payoff is −Q(1+ v1), where Q is the probability

that the agent takes y. If m2(y) = v1 with probability 1, then, the motivated agent with a

tolerance takes y for any s1 6 1. Then, Q > γ > γ
β
v1
, and thus, the principal’s payoff is less

than that in case (d). Therefore, this case is never optimal. This implies that the motivated

agent with a tolerance is indifferent between taking x and y. Then, Rv1 + u − as1 = 0,

where R is the probability that the principal sets contract (s2,m2) = (1, v1). Thus, R < 1.

Then, P∗y = v1 should hold. As P∗y =
γβ
Q , Q = γβ

v1
. Therefore, the expected payoff is at

most that in case (d).

(f) Suppose that all types take y. Then, P∗x = 0. As in case (e), because the motivated agent

without a tolerance takes y, Rv1 + u − as1 > m1. If s1 > 0, Rv1 + u − as1 > m1, and then,

the motivated agent with a tolerance takes y with probability 1, in which case, Q > γ.

Then, as in (e), the payoff of the principal is less than that in case (d). Therefore, s1 = 0.
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This case is the same as that in Lemma 3. Then, the expected payoff is −β(1+γ) if v1 > γ,

and −γβv1
(1 + v1) if v1 < γ. In each case, the expected payoff is less than that in case (d).

In summary, if β is sufficiently small, case (d) maximizes the principal’s payoff. �

Next, consider the case that γ is small enough but c > 0.

Proposition I.2. Assume that st ∈ [0, 1] and Assumption 1. If c ∈ (0, a), β < v1, and γ is

sufficiently small, in the optimal contract, (s1,m1) = (
u−a
a−a, 0) is offered, (u, a) takes y with

probability β
1−β

1−v1
v1

, and s2(y) = 0 with a probability.

In this case, s1 > 0. However, in the second period, (s2(y),m2(y)) = (0, 0) is taken with a

probability. Therefore, a similar statement to Proposition 5 holds.

Proof of Proposition I.2. As in the proof of Proposition I.1, we consider cases (a)–(f). Note

that even when c > 0, for cases (a) and (b), as in the proof of Proposition I.2, we can show

that m1 > 0 for any γ. In case (c), as seen above, the selfish agent without a tolerance takes y,

otherwise, m1 > 0. In such case, the principal’s payoff does not converge to 0 as γ → 0.

Then, consider cases (d)–(f), in which cases, m1 = 0 is possible when γ is small enough.

(d) Suppose that only the agent with a tolerance takes y. Then, P∗y = Py. Then, if y is

taken, (s2(y),m2(y)) = (u/a, 0) is never taken. As the motivated agent with a tolerance takes

y, it also holds that m2(y) = v1 with a probability. As m2(y) = v1 with a probability, v1 6 Py

should hold. Then, the principal’s expected payoff is the following.

−γ(β + (1 − β)q)(1 + cs1 + v1) − (γ(1 − β)(1 − q) + (1 − γ))m1,

where q is the probability that the motivated agent with a tolerance takes y. As in the case

for c = 0, (s2(x),m2(x)) = (u/a, 0), the motivated and tolerant agent’s payoff for taking y is

Rv1 + u − as1. If (u, a) takes y with probability 1, Py = β < v1, which is a contradiction.

Therefore, (u, a)mixes his action. Then, Rv1+u−as1 = m1 holds. As the selfish agent without
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a tolerance takes x, Rv1+u−as1 6 m1. By this inequality, we can show that (s1,m1) = (
u−a
a−a, 0)

is the optimal contract.14 Then, by the same logic as the case in Lemma 2, we can show that

q = β
1−β

1−v1
v1

is a unique equilibrium. Then, the expected payoff is − βγv1
(1+ cs∗ + v1). If γ → 0,

the expected payoff converges to 0, and therefore, cases (a)–(c) are never optimal.

(e) Suppose that the agent with (u, a) , (u, a) takes y. Let q be the probability that the selfish

agent without a tolerance takes y and q′ be that the motivated agent with a tolerance takes y.

The cases for q = 0 or q′ = 0 are considered above. Thus, consider the case q > 0 and q′ > 0.

The principal’s payoff is Q(1+ cs1+ v1)+ (1−Q)m1. As (u, a) takes x, m1 > Uy(u, a)+u−as1.

IfUy(u, a)+u−as1 > 0, m1 = Uy(u, a)+u−as1. Otherwise, m1 = 0. If m1 = Uy(u, a)+u−as1,

q = q′ = 1 is optimal, and then, Q = 1 − (1 − γ)(1 − β). If γ is sufficiently small, the expected

payoff is less than that in case (d). Therefore, consider the case that m1 = 0. Further, if q = 1,

Q > β, in which case, the expected payoff is less than that in case (d) for sufficiently small

γ. Consider q ∈ (0, 1), in which case, Uy(u, a) + u − as1 = 0. As Uy(u, a) > Uy(u, a) = Rv1,

s1 >
Rv1+u

a . Also, since Rv1 + u − as1 > 0, R >
u a

a
−u

v1(1−
a

a
)
. Therefore, s1 > s∗. Note that

Py =
βγ+β(1−γ)q

Q , P∗y =
βγ
Q , and Q = βγ + β(1 − γ)q + (1 − β)γq′. Then, as Py 6 v1 and

(1 + c u
a )P
∗
y 6 v1, Q >

γβ
v1
. Thus, the expected payoff is less than that in case (d). Therefore,

this case is never optimal.

(f) Suppose that all types take y. As the motivated agent without a tolerance takes y, the

motivated agent with a tolerance also takes y. Then, Q > β. If γ is sufficiently small, this case

is never optimal.

In summary, case (d) is optimal for sufficiently small γ. �

Note that this result depends on whether the distribution of the agent’s type is discontinuous

and the players’ payoffs are linear in s. Even with a continuous distribution, if the density of

types other than {(u, a) : u ∈ {u, u}, a ∈ {a, a}} is sufficiently small, similar results hold. One

14By fixing m1, the minimum value of s1 that satisfies Rv1 + u − as1 6 m1 is Rv1+u−m1
a . As c/a < 1, m1 = 0

minimizes the total cost. Then, as Rv1 + u − as1 = m1 holds, s1 =
u−a

a−a .
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of the characteristics of our study is focusing on corner solutions in the optimal contracts. The

linearity in the players’ payoffs guarantees the optimality of corner solutions.

II. Prize vs. Sanctions

In the basic model, we assumed that s is a kind of sanction: each agent incurs a cost when

sanctioned, but the cost is uncertain. However, as anothermodeling possibility, we can consider

giving a (non-monetary) prize. In this case, each type of agent obtains a positive payoff when

he obtains the prize, but the payoff is also uncertain. We distinguish prizes from the monetary

reward (mt)t∈{1,2}. Further, we assume that the principal can give prizes conditioned on each

period of the agent’s action in addition to monetary rewards. Prizes would include praise,

awards, and so on. Compared with a monetary payoff, the payoff of obtaining such prizes

would differ person to person. For example, some may never care about being praised, but

some may be greatly influenced by it. In this section, therefore, we consider the case that the

principal can give a (non-monetary) prize in addition to a monetary reward instead of imposing

a sanction.

To this end, we assume that in each period, the principal can offer a contract, in which if

the agent takes x, the principal gives mt > 0 and st ∈ {0, 1}; otherwise, the principal gives

nothing. The agent’s payoff is (mt + a · st) · I(dt = x) + u · I(dt = y).

Note that even under this setting, the agent’s second-period behavior is the same as that in

the basic model. In contrast, the principal’s payoff slightly changes because the cost of s is

paid when the agent takes x.

the principal’s behavior:

(a) If P∗d1
+ (1 − P∗d1

)c = min{P∗d1
+ (1 − P∗d1

)c, Pd1, v1 + c, u}, (s2,m2) = (1, 0) is optimal.

(b) If Pd1 = min{P∗d1
+ (1 − P∗d1

)c, Pd1, v1 + c, u}, (s2,m2) = (0, 0) is optimal.

(c) If v1 + c = min{P∗d1
+ (1 − P∗d1

)c, Pd1, v1 + c, u}, (s2,m2) = (1, v1) is optimal.

(d) If u = min{P∗d1
+ (1 − P∗d1

)c, Pd1, v1 + c, u}, (s2,m2) = (0, u) is optimal.
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To simplify, we assume v1+ c < u, which implies that c < 1. Then, we can exclude case (d).

With the prize, the principal tends to bear more cost than the case of sanctions. This

is because the principal pays the prize cost when the agent takes x, whereas in the case of

sanctions, she pays the cost when the agent takes y. As the principal prefers the agent to take

x, she makes the agent take x, in which case she needs to pay the cost. Due to this difference,

if c is sufficiently large, some difference occurs, as shown below.

Proposition II.1. Assume c > 0, β < v1 + c, and s1 = 1. Then, for sufficiently small γ, there is

an equilibrium in which the agent without a tolerance takes x, the selfish agent with a tolerance

takes y, and the motivated agent with a tolerance takes y with probability β
1−β

1−(v1+c)
(v1+c) .

In this case, the principal mixes (s2(y),m2(y)) = (1, v1) and (s2(y),m2(y)) = (0, 0), and sets

(s2(x),m2(x)) =

(0, 0) if β < c,

(1, 0) if β > c.

Moreover, as γ → 0, the principal’s payoff is −(c +min{β, c}).

Proof of Proposition II.1. Note that by Lemma 1, the second-period payoff is either u (taking

y) or as2 +m2 (taking x). Consider the agent with type (u, a) = (u, a). By taking x, the payoff

of the agent without a tolerance is at least m1 + a > a. In contrast, by taking y, the payoff of

the agent is at most u +max{u, a + v1. Note that as v1 = u − a, v1 + a > u. Thus, if the agent

takes y, u + v1 + a > a. As u < 0, such type of agent never takes y.

Now consider the other types.

Case 1. Suppose that m1 > v1 + u. Consider the motivated agent with a tolerance. The agent

takes x in the second period. Then, the second-period payoff is m2 + s2a 6 v1 + a.

Consider the first-period payoff. If the agent takes y, his payoff is at most u + v1 + a.

In contrast, if he takes x, his payoff is at least m1 + a. Therefore, if m1 > v1 + u, the

motivated agent with a tolerance never takes y.
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This implies that at the equilibrium, Py = 1, and Px 6 β. Then, in the second

period, by Lemma 1, s2(y) = 1. Consider the selfish agent with a tolerance. His

second-period payoff is either u (taking y) or v1 + a = u (taking x). Therefore, such

an agent is indifferent to the second choice. Therefore, he takes x if and only if

m1 + a > u ⇐⇒ m1 > v1.

Lastly, consider the selfish agent without a tolerance. His second-period payoff is

either u (if (s2,m2) = (0, 0)), a (if (s2,m2) = (1, 0)), or a + v1 (if (s2,m2) = (1, v1)).

Suppose that m1 > v1. Then, if he takes y, his payoff is at most u+ v1 + a. In contrast,

if he takes x, his payoff is at least m1 + a + u. Therefore, if m1 > v1, he never takes y.

Consider the case that m1 < v1. Here, the selfish agent with a tolerance takes y. Then,

P∗x = 0. Next, m2(x) = 0. Let α be the probability that the selfish agent without a

tolerance takes y. Thus,

P∗x = 0, Px =
β(1 − γ)(1 − α)

(1 − β) + β(1 − γ)(1 − α)
, P∗y =

γ

γ + (1 − γ)α
, Py = 1.

Take a small γ that satisfies γ(1 − c) < v1. This implies that m2(y) = 0. Then, taking

y is better than taking x if and only if u + a > m1 + a + u ⇐⇒ 0 > m1. Now taking

x is optimal.

Case 2. Suppose that m1 < v1 + u. Then, the selfish agent with a tolerance takes y, which

implies that P∗x = 0, and then m2(x) = 0. As in Lemma 2, we consider the equilibrium

in which the selfish agent without a tolerance takes x, the motivated agent with a

tolerance takes y with probability α, and the principal takes (s2(y),m2(y)) = (1, v1)

with probability q, and (s2(y),m2(y)) = (0, 0) with the complementary probability

1 − q.

Px =
β(1 − γ)

(1 − β)((1 − γ) + γ(1 − α)) + (1 − γ)β)
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We have two cases:

a) β < c. In this case, as Px 6 β, and P∗x = 0, Px < P∗x + (1 − P∗x)c = c. Then,

(s2(x),m2(x)) = (0, 0).

For (u, a), taking y is better than taking x if and only if u+q(v1+a)+ (1−q)(u) >

m1 + a + u ⇐⇒ (1 − q)v3 + qv1 > m1.

Similarly, for (u, a), taking y is better than taking x if and only if u + q(v1 + a) >

m1 + a ⇐⇒ v2 + q(v1 + a) > m1. Note that as v2 > v3, v2 + q(v1 + a) >

(1 − q)v3 + qv1. Thus, if v2 + q(v1 + a) = m1, for (u, a), taking x is optimal. In

this case, q = m1−v2
v1+a .

b) β > c > 0. In this case, for sufficiently small γ, Px > c = P∗x + (1 − P∗x)c. Then,

(s2(x),m2(x)) = (1, 0).

For the selfish agent without a tolerance, taking y is better than taking x if only

if u + q(v1 + a) + (1 − q)(u) > m1 + a + a ⇐⇒ (2 − q)(u − a) + qv1 > m1. As

u < a, (2− q)(u− a)+ qv1 < u− a+ v1 = v3 + v1 < 0. Thus, for the selfish agent

without a tolerance, taking x is optimal.

Similarly, for the motivated agent with a tolerance, taking y is better than taking

x if only if u + q(v1 + a) > m1 + a + a ⇐⇒ v2 + q(v1 + a) − a > m1. Note that

if m > v1 + v2, for (u, a), taking x is better than taking y.

In contrast, if m > v1 + v2: In this case, if q = m1+a−v2
v1+a , the motivated agent with

a tolerance is indifferent between taking x and y.

Consider the principal’s behavior. In each case, as the motivated agent with a tol-

erance takes y with probability α, Py = P∗y =
β

β+(1−β)α . Then, for the principal,

(s2(y),m2(y)) = (0, 0) is better than (s2(y),m2(y)) = (1, 0). Now consider α such that

Py =
β

β + (1 − β)α
= v1 + c ⇐⇒ α =

β

1 − β
1 − (v1 + c)
(v1 + c)
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As β < v1 + c, α ∈ (0, 1).

In summary, if γ is sufficiently small, there exists the following equilibrium.

1. If m1 > v1, all agents takes x.

2. If m1 ∈ (v1 + u − aI(β < c), v1), only (u, a) = (u, a) takes y.

3. If m1 < v1 + u − aI(β < c): the agent without a tolerance takes x, the selfish agent with

a tolerance takes y, and the motivated agent with a tolerance takes y with probability

α2 =
β

1−β
1−(v1+c)
(v1+c) .

The principal mixes (s2(y),m2(y)) = (1, v1) and (s2(y),m2(y)) = (0, 0), and

(s2(x),m2(x)) =

(0, 0) if β < c

(1, 0) if β > c

The payoff of the principal is as follows:

1. If m1 > v1,

π = −(m1 + c +min{γβ + (1 − βγ)c, β, v1 + c}).

Then, when γ → 0, the maximum value is π = −(v1 + c +min{β, c}).

2. If m1 ∈ (v1 + u − I(β > c)a, v1),

π = −γβ(1 + v1 + c) − (1 − γβ)
(
c + m1 +min

{
c,

β(1 − γ)
β(1 − γ) + (1 − β)

})
.

Then, as γ → 0, the maximum value is π = −(c + v1 + u − I(β > c)a + min{β, c}) 6

−(c + v1 + v2 +min{β, c}).
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3. If m1 < v1 + u − I(β > c)a,

π = −γ(β + (1 − β)α2)(1 + v1 + c)

− (1 − γ(β + (1 − β)α2))

(
m1 + c +min

{
β(1 − γ)

(1 − β)((1 − γ) + γ(1 − α2)) + (1 − γ)β
, c

})
.

Then, as γ → 0, the maximum value is π = −(c +min{β, c}).

Then, the third case maximizes the principal’s payoff, which completes the proof. �

This proposition shows that if γ is sufficiently small, the probability of reactance is
β

1−β
1−(v1+c)
(v1+c) . This probability is smaller than that in the basic model where a sanction can

be imposed instead of a non-monetary prize if c > 0. Recall that in the basic model, by

Lemma 4 and Proposition 5, if γ and β are sufficiently small, (s1,m1) = (1, 0) is optimal, in

which case, the probability of reactance is β
1−β

1−v1
v1

. The reactance probability is smaller when

a sanction is supplanted by a prize.

The intuition is similar to the previous results. As in the previous cases, the principal and

the motivated agent with a tolerance play mixed strategies. If the principal uses non-monetary

prizes instead of sanctioning, when she implements (s2,m2) = (1, v1), she incurs a cost of

giving the prize. Then, the principal’s payoff of offering (s2,m2) = (1, v1) decreases compared

with the case that she uses sanctions. For the mixed strategy equilibrium to occur, the payoff

of offering (s2,m2) = (0, 0) should also decrease, which is increasing in the probability of

reactance. Therefore, the probability of reactance decreases. In contrast, the principal’s

payoff is greater with the sanctioning option, in which case, the payoff is 0 as γ → 0. This is

because, in such a case, as the probability of the selfish agent is 0, that of taking y is 0. On

the one hand, the principal must give a prize with a positive cost with the prize option. On the

other hand, the principal must not impose sanctions with the sanctioning option.

We remark that if β < c, (s2(x),m2(x)) = (0, 0), in which case, the selfish agent without a

tolerance takes y in the second period, while he takes x in the first period, which never happens
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in the case of sanctions. This implies that if the principal ceases giving prizes for the preferred

action, the agent switches to take the unpreferred behavior.

III. Strategic Forgoing of Sanctions under Asymmetric

Damages

We have assumed that the damage for the principal caused by the agent’s unpreferred action

is constant over the types of agents. However, there may be some cases where the amount of

damages depends on the agents’ types. For example, consider the case where the damage for

the principal from the unpreferred action (y) taken by the agent with u is higher than that for

the agent with u. This situation represents the more severe damage the principal has from the

unpreferred action taken by this agent, whose preference is more similar to the principal. We

assume that it brings payoff −(1+ k)where k > 0 for the principal if the agent with u = u takes

y while the payoff for the principal remains −1 if agent with u = u takes y. k represents the

additional damage for the principal from the unpreferred action taken by the motivated agent

compared with the selfish agent. We also assume that the damage is unobservable until the

game ends, and then the principal cannot infer the agent’s type from her damage.

With a positive k, the reactance behavior of the motivated agent becomes costlier. Imposing

sanctions may deteriorate the reactance behavior, increasing the hidden cost of sanctions.

Indeed, by Lemmas 2 and 3, in the mixed equilibria, if c = 0, the probability of reactance is

γ
β

1−β
1−v1
v1

if s1 = 1 while it is β
1−β

γ−v1
v1

if s1 = 0. The intuition is as follows. If s1 = 1, only the

motivated agent with a tolerance takes unpreferred action, while if s1 = 0, the motivated agent

without tolerance can take unpreferred action. Then, with the same probability of reactance,

P∗y becomes larger when s1 = 1. In the mixed strategy equilibrium, the principal is indifferent

between a contract with no payment and that with a positive payment. Under the equilibrium

contract with a positive payment, independent of s1, the principal’s payoff is −v1. Therefore,
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the value of P∗y is independent of s1. Then, the probability of reactance should be small when

s1 = 0. In summary, the probability of reactance increases as s1 increases. As the reactance is

costlier, s1 = 0 can be optimal.

Indeed, the following proposition shows that the increased hidden cost of sanctions deters

the principal from imposing sanctions even without the long-term commitment of s1 = s2 = 0,

which is in contrast with the case when k = 0 (Proposition 2).

Proposition III.1. Suppose that k > 0 and c = 0. Then, if

γ >
v1

1 + (1 − v1)k
, (2)

for sufficiently small β, s1 = 0 is optimal.

Proof of Proposition III.1. Since the motivated agent has no incentive to take y in the second

period, we can apply the analysis in the previous model to that in this extended model. We

only need to modify the principal’s payoff, which is summarized below.

Lemma III.1. Assume that c = 0 and γβ < v1 < 1. For each given (m1, s1), the unique

equilibrium payoff of P, π(m1, s1) is

π(m1, 1) =



−m1 − γβ if m1 > v1

−γβ(1 + v1) − (1 − γβ)m1 if m1 ∈ (v1 + v2, v1)

−γ(1 + (1 − β)k + v1) − (1 − γ)m1 if m1 ∈ [0, v1 + v2) and v1 < β

−
γβ
v1
(1 + v1 + (1 − v1)k) −

(
1 − γβ

v1

)
m1 if m1 ∈ [0, v1 + v2) and v1 > β.

π(m1, 0) =



−m1 − γβ if m1 > u

−β(1 +min{γ, v1}) − (1 − β)m1 if m1 ∈ (v1 + u, u)

−β(1 + γ) − (1 − β)m1 if m1 ∈ [0, v1 + u) and v1 > γ

−
γβ
v1

(
1 + v1 +

(
1 − v1

γ

)
k
)
−

(
1 − γβ

v1

)
m1 if m1 ∈ [0, v1 + u) and v1 < γ.
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Let πs be the principal’s payoff with given sanction level s. By the above lemma, πs is

calculated as follows.

π1 = max
m1

π(m1, 1) =


max {−v1 − γβ − (1 − γβ)v2,−γ(1 + (1 − β)k + v1)} if v1 < β,

max
{
−v1 − γβ − (1 − γβ)v2,−

γβ
v1
(1 + (1 − v1)k + v1)

}
if v1 > β,

π0 = max
m1

π(m1, 0) =


max {−u − γβ,−β(1 + γ)} if v1 > γ,

max
{
−v1 − β − (1 − β)u,−γβv1

(1 + v1 +
(
1 − v1

γ

)
k)

}
if v1 < γ.

If β is sufficiently small,

π1 = −
γβ

v1
(1 + (1 − v1)k + v1),

π0 =


−β(1 + γ) if v1 > γ,

−
γβ
v1
(1 + v1 +

(
1 − v1

γ

)
k) if v1 < γ.

If v1 > γ, π0 > π1 if only if inequality (2) holds. If v1 < γ, as γ < 1, π0 > π1 holds. In each

case, s1 = 0 is optimal. �

Intuitively, as shown in Figure 2, imposing sanctions deteriorates the reactance behavior

when β is small and γ is large. Moreover, as only the motivated agent with a tolerance opts for

a reactance behavior and causes damage k when β = P(u = u) gets smaller and γ = P(a = a)

gets larger, the expected loss from the reactance behavior becomes more severe. Thus, to

reduce this possibility of reactance, the principal forgoes her option of imposing sanctions.

When k = 0, without the long-term commitment of s1 = s2 = 0, the benefit of imposing a

sanction, namely, curtailing the unpreferred behavior of the selfish agent, exceeds the cost of

deteriorating reactance behavior taken by the motivated agent. A positive k increases the latter

cost.
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