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Abstract

This study investigates how the introduction of a competitor affects the behavior of

an incumbent electricity producer who is a former local monopolist. We especially focus

on its implications for the incumbent’s capacity choice between two different electric power

sources: one technology with a relatively high production cost (peak-load technology), which

is represented by gas-fired power generation, and the other with a relatively high capacity-

building cost (base-load technology), which is represented by nuclear power generation. We

assume that the entrant does not have access to the latter technology and also that demand

fluctuates over time, as is typically the case with an electricity market. Surprisingly, the

introduction of a competitor increases the capacity of nuclear power generation if and only if

the nuclear technology is sufficiently inefficient. This result also implies that the competition

tends to decrease the nuclear capacity when the level of carbon tax, which tends to raise the

relative production cost of gas-fired power generation, is sufficiently high.
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1 Introduction

Almost all nuclear power plants in Japan stopped operating following the Fukushima-Daiichi

nuclear plant accident, which was triggered by the Great East-Japan Earthquake in March 2011.

If left unused, most existing nuclear plants in Japan will become too obsolete to be retrofitted

by the middle of this century. At the same time, it would require substantial spending for old

nuclear power plants to be replaced with ones that are compliant with much stricter current

regulations (The Mainichi, 2019). Together with heightened safety concerns, the expected high

costs of operationalizing nuclear power plants on a significant scale and its potential effects of

doing so on environmental and other social issues, such as climate change, have made nuclear

power one of the most hotly debated subjects in the political arena as well as in the news media

in Japan.

Besides nuclear power, there is a variety of other technologies available for electricity provi-

sion. Notable examples include coal-fired, gas-fired, hydro-electric, biomass power, wind-power,

and solar photovoltaic generations. The choice of technologies for electricity production de-

pends on economic as well as technological, environmental, and social considerations. From an

economic viewpoint, market demand and cost structures of the respective technologies are espe-

cially important. Demand for electricity fluctuates between day and night,1 and among seasons.

In addition, there are significant fluctuations and uncertainty in electricity demand induced by

such factors as states of an economy and weather-related events. Once a large-scale plant using

a technology such as nuclear and hydro-electric power is established, there is little cost-saving

possibility even if the quantity of electricity supplied to consumers turns out to be below its

production capacity. On the other hand, technologies such as gas-fired and biomass power gen-

erations yield immediate cost savings when the inputs necessary for electricity production are

reduced.

Thus, in order to choose its own cost-minimizing mix of production technologies, a power

company uses a more easily adjustable technology (typically referred to as a peak-load technol-

ogy), such as gas-fired power generation, to cope with the volatile part of the demand, and a

1Allcott (2011) estimates electricity demand under fluctuating demand structure.
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more rigid technology (a base-load technology), such as nuclear power, plays a central role in

providing for a base portion of the demand. This study starts by focusing on a local monopo-

list’s profit-maximizing motive and discusses its optimal selection of two different electric power

sources, gas-fired and nuclear (adjustable and rigid) power generation technologies.2

Since around the 1990s, regional electricity markets in Japan have transformed from local

monopolies to more competitive markets, and the shares of new entrants in formerly monopolized

regional electricity markets are gradually increasing across the country. The overall share of

new entrants reached 16.2% of the national electricity market in April 2020 (Electricity and Gas

Market Surveillance Commission, 2020), and this deregulation trend appears to have accelerated

after the Fukushima Daiichi nuclear plant accident.

In the main part of the study, therefore, we investigate how the introduction of competition

affects the behavior of electricity producers and discuss its implications for the resulting capacity

choice of different electric power sources. In particular, we consider a case in which a new

competitor enters a market (and creates a duopoly market) that was originally served by a

local monopolist. We suppose that, while the incumbent firm can use both adjustable and rigid

technologies in its electricity production, the entrant does not have access to the latter technology

that requires a substantial capacity-building cost,3 represented here by nuclear power generation.

As our main finding, we show that relatively inefficient nuclear power generation technology,

measured by a sufficiently high cost for becoming operationalized, results in a larger capacity

of nuclear power generation than that under the monopoly environment. We also interpret our

results from the perspective of environmental policy and conclude that the nuclear capacity

tends to decrease with the introduction of a competitor when the level of carbon tax, which is

imposed on adjustable technology such as gas-fired power generation, is sufficiently high.

While this study is partially related to the real options theory, which accounts for the cost

of losing flexibility while investing under uncertainty (see, among others, Dixit and Pindyck,

2How the input of an ex ante control and that of an ex post control should be chosen are investigated by
Hartman (1976) for a competitive market, and Ishii (1979) for a monopoly market under uncertain demand. The
main finding of these works is that an ex ante “poor” choice could be partially adjusted by controlling ex post
inputs.

3Dixit (1979) demonstrates that the incumbent can create a situation in which a new entrant is inactive if
there is a sufficiently large fixed cost to enter the market.
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1994), we focus on strategic interactions by employing a game-theoretic approach typically used

in the industrial organization literature.4 In their seminal works, Spencer and Brander (1992)

consider a trade-off between flexibility and strategic pre-commitment by introducing demand

uncertainty in a Stackelberg model, and Boyer and Moreaux (1997) investigate how technological

flexibility choices depend on strategic interactions and industry characteristics in a duopoly

model. A relsult closely related to our study is presented by Goyal and Netessine (2007),

who analyze both the equilibrium technology choice and capacity investment in a multi-market

duopoly model.5 One of their main findings is that, as the competitor’s cost of capacity building

decreases and thus, as the competition intensifies, the other firm favors a more costly but flexible

production process. Our study differs from these previous works in that we examine the effects

of a competitor’s market entry on the technology choice, which is based on capacity investment

of an incumbent firm. Moreover, we obtain a contrasting result to Goyal and Netessine (2007),

in that, when competition intensifies, an incumbent firm can increase the use of a less costly but

inflexible production technology (base-load technology).

The underlying economic model employed in this study is most closely related to the two-

stage game proposed by Milstein and Tishler (2012), which considers the capacity/technology

choice under demand fluctuations in the initial stage of the game and examines the economic

implications of the subsequent Cournot competition with two contrasting power-generation tech-

nologies.6 They show that underinvestment in generation capacity realizes due to the rational

behaviors of the firms and also that the electricity price spike occurs as an effective substitute

for the firms’ accumulating excess generation capacities. Whereas we adopt a similar modeling

framework, the focus of our study is substantially different from that of Milstein and Tishler

4Cardell et al. (1997) analyze strategic interactions in electricity transmission networks.
5They consider two products and define the flexible (inflexible) technology as that whose capacity can be used

for both the products (must be used for one of the products).
6An economic model of optimal capacity choice under demand fluctuations in a game-theoretic context has

been developed steadily over the last twenty years or so. With regards to the ones adopting Cournot competition,
Gabszewicz and Poddar (1997) investigate the characteristics of a subgame perfect equilibrium of a capacity
building game between two symmetric firms under demand uncertainty with finite discrete states. Murphy and
Smeers (2005) extend the setting to an asymmetric Cournot model with one firm which builds and operates
only base plants and the other firm which builds and operates only peak plants, and derive its subgame perfect
equilibrium. Tishler et al. (2008) investigate capacity choice of multiple Cournot firms under demand uncertainty
with a continuous density function assuming a single technology, and Milstein and Tishler (2012) extend this
model by incorporating two technologies.
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(2012) in that we analytically examine how an intensified competition affects the capacity-

investment choice of an incumbent firm and especially how it is associated with the relative

efficiencies of different technologies.7

The rest of this paper is organized as follows. Section 2 sets up our economic model. Section

3 investigates the case of monopoly. Section 4 analyzes the case of duopoly and identifies the

effects of introducing a competitor by comparing the results with those in the monopoly case.

Section 5 reinterprets our main results and discusses the implications of imposing a carbon tax

on fossil-fuel-oriented electricity. Section 6 provides simulation results of our model, focusing on

the equilibrium market shares of electricity generated by nuclear technology and the resulting

operation rates of a nuclear plant. Section 7 concludes.

2 The model

Consider a local electricity market. We suppose that there are two different types of technologies

that produce electric power of a homogeneous quality. Specifically, these are referred to as a

nuclear power plant and a gas-fired power plant.8 A nuclear power plant incurs a higher capacity-

building (or set-up, or operationalizing) cost than a gas-fired power plant does while a gas-fired

power plant incurs a higher marginal production cost. In the benchmark case presented in the

next section, the market is monopolistically served by firm 1. With the entry of firm 2, the

market becomes duopolistic, and the two firms essentially play the following sequential game:

(i) the capacities of the power plants are determined under demand uncertainty; (ii) the actual

demand is revealed; and finally (iii) the firms choose the quantities of electricity supplies.

For the sake of analytical tractability, we make the following simplifying assumptions. Sup-

pose that firm 1 chooses the capacity of its nuclear power plant, k1 ∈ R+, and that firm 1 chooses

the total capacity of its gas-fired power plants, ℓ1 ∈ R+ (and firm 2 also chooses ℓ2 ∈ R+ in the

duopoly case).9 The capacity-building cost of the nuclear plant is given by rk1, where r > 0,

7As for the effects of competition in the electricity industry, see also Borenstein et al. (2000, 2002).
8In a different context, a nuclear power plant would be replaced by, e.g., a hydro-electric power plant, and a

gas-fired power plant would be replaced by a coal-fired, oil-fired, or biomass power plant.
9Note that only the incumbent firm (or firm 1) can use nuclear power technology, and therefore, k2 = 0 in the

duopoly case. Furthermore, we ignore inter-temporal considerations to focus on the steady-state outcomes, and
the capacity of a nuclear plant is measured in terms of the amount of electricity that the plant can produce in
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while the capacity-building cost of the gas-fired plant is assumed to be 0. The inverse demand

of the local electricity market is given by p = A−Q, where p is the market price and Q is the

quantity of electricity demanded in the market. The scale of the market, A, is a random variable

that follows a uniform distribution with the support of a positive-valued interval, [L,H],10 and

the exact size of A is revealed after the firms have made their capacity choices. Finally, after

observing A, firm 1 chooses the volume of electricity produced from the nuclear power plant,

x1(A) ∈ [0, k1], and the volume produced from gas-fired power generation, y1(A) ∈ [0, ℓ1] (in

the duopoly case, firm 2 also chooses y2(A) ∈ [0, ℓ2]). Thus, firm 1’s aggregate supply is given

by q1(A) = x1(A) + y1(A) (and firm 2’s total supply is simply q2(A) = y2(A)). Noted that,

since demand is revealed after the capacities are established and before the market clears, the

firms’ decisions on the quantities of their electricity supply depend on the actual value of A, but

their capacities do not. For simplicity, we suppose that the variable production cost of a nuclear

power plant is 0 while that of a gas-fired power plant is given by cyi(A) for firm i(i = 1, 2),

where c = c0+ t > 0. Since some carbon tax may be imposed on the fossil fuel, we suppose that

the overall marginal cost of the gas-fired power c is composed of a unit carbon tax, t ≥ 0, and

the marginal production cost, c0 > 0. Note that, in the final quantity-setting stage, the firms

can adjust these variable costs while the capacity-building cost is considered sunk.

We use a subgame-perfect equilibrium as our equilibrium concept and solve the game back-

wards. Since the set-up cost of a gas-fired plant’s capacity is 0, firm i always chooses a sufficiently

large value of ℓi so that yi(A) is not bounded from above by ℓi in any subgame-perfect equilib-

rium. Thus, ℓi becomes irrelevant to the other aspects of the equilibrium.

Furthermore, we adopt the following three assumptions, which turn out to be convenient for

obtaining the equilibrium results algebraically:

A.1 Var(A) >
(L+ 2c)2

48
, A.2 r < c, A.3 c <

L

2
.

the steady state.
10The assumption of uniform distribution is principally for the tractability of the analysis, but it would not be

significantly divergent from actual cases. For instance, Figure 2.1 of Léautier (2018) shows that the load duration
curve for France in 2009 generally reflects such a distribution. Tishler et al. (2008) and Milstein and Tishler
(2012) also adopt a uniform distribution in the analytical parts of their papers.

6



A.1 allows us to restrict our attention to the case in which demand is sufficiently volatile.11 In

fact, A.1 is the condition to exclude the case in which firm 1 does not supply a positive amount

of gas-oriented power in any situations that satisfy the next two assumptions.12 According to

A.2, for all the conceivable scales of the market demand, nuclear power production technology

is more efficient than gas-fired power generation technology in terms of production in the steady

state, provided that a nuclear plant has no idle capacity. A.3 is the condition that does not

allow firm 1 to become a monopolist whenever there is a potential rival firm in the same market.

3 Monopoly

In this section, as a benchmark case, we consider firm 1 as the sole supplier of electricity in a

local market.13 Firm 1 can utilize both nuclear and gas-fired power generation technologies for

producing electricity. We suppose that the price of the electricity is endogenously determined

within the market.14

3.1 Quantity-setting stage

In the final quantity-setting stage, firm 1’s profit maximization problem,

max
x1,y1

pq1 − cy1 s.t. x1 ≤ k1,

11Since V ar(A) = (H−L)2/12, A.1 is equivalent to 2H > 3L+2c. This condition is always satisfied if H ≥ 2L,
for instance, holds alongside with A.3. This condition and A.3 imply that H > 4c.

12Specifically, this is the necessary and sufficient condition for both firms to have interior solutions in terms
of generating gas-fired power for some r ∈ (0, c) in Section 4, and the sufficient condition for the monopolist in
Section 3.

13The monopoly case can also be regarded as a collusive outcome in which firms 1 and 2 decide their aggregate
production capacities to maximize their joint profit.

14In reality, the electricity price charged by a local monopolist is often subject to a regulation. Even if we
consider a price-regulated monopolist as a benchmark case, our main result still holds (see Appendix B). In order
to focus on the issues of technology choice through capacity investment, we does not consider further complex
pricing methods for electricity. See Allcott (2011) for hourly real-time pricing and Daruwala et al. (2020) for
menu pricing to allow household self-selection.
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where p = A− q1 and q1 = x1 + y1, yields the equilibrium outcomes for given values of k1 and

A as follows:15

(xm1 (k1;A), ym1 (k1;A)) =



(
k1,

A−c
2 − k1

)
if k1 ∈ [0, A−c

2 ] ⇔ A ∈ [2k1 + c,∞),

(k1, 0) if k1 ∈ [A−c
2 , A2 ] ⇔ A ∈ [2k1, 2k1 + c],(

A
2 , 0
)

if k1 ∈ [A2 ,∞) ⇔ A ∈ (0, 2k1].

(1)

qm1 (k1;A) =



A−c
2 if k1 ∈ [0, A−c

2 ],

k1 if k1 ∈ [A−c
2 , A2 ],

A
2 if k1 ∈ [A2 ,∞).

pm(k1;A) =



A+c
2 if k1 ∈ [0, A−c

2 ],

A− k1 if k1 ∈ [A−c
2 , A2 ],

A
2 if k1 ∈ [A2 ,∞).

(2)

The superscript “m” represents the equilibrium of each outcome in this monopoly market.

As is seen in (1), firm 1’s optimal production plan has three distinct patterns. If the scale

of demand is sufficiently large in relation to a nuclear plant’s capacity, that is, if A > 2k1 + c,

then gas-fired power generation technology is utilized to make up for the shortage of a nuclear

plant’s capacity. If the scale of demand is small enough to satisfy A ≤ 2k1+ c, all the electricity

in the market is supplied by nuclear power technology. Moreover, when the scale of demand, A,

is smaller than 2k1, the nuclear plant ends up having idle capacity, that is, k1 > xm1 (k1;A).

From (1) and (2), we can compute the monopolist’s profit excluding the capacity-building

cost of a nuclear plant as16

πm
1 (k1;A) =



(A−c)2

4 + ck1 if k1 ∈ [0, A−c
2 ] ⇔ A ∈ [2k1 + c,∞),

k1(A− k1) if k1 ∈ [A−c
2 , A2 ] ⇔ A ∈ [2k1, 2k1 + c],

A2

4 if k1 ∈ [A2 ,∞) ⇔ A ∈ (0, 2k1].

15Note that, from the assumption A.3 above, we have an interior solution with respect to q1 for all A ∈ [L,H].
16πm

1 (k1;A) is a smooth function with respect to k1.
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3.2 Capacity-setting stage

In the initial capacity-setting stage, the firm establishes the capacity of a nuclear power plant

under uncertain demand. It attempts to maximize the following expected profit:

max
k1

1

H − L

∫ H

L
πm
1 (k1; a)da− rk1. (3)

Let km1 be the solution of this problem, that is, the equilibrium capacity of a nuclear plant in

this monopoly case.

Given L
2 < H−c

2 by A.1, firm 1’s expected marginal revenue in this stage, MRm(k1), is as

follows:17

d

dk1

1

H − L

∫ H

L
πm
1 (k1; a)da =



c if k1 ∈ [0, L−c
2 ],

1
H−L

[
2cH−L2−c2

2 − 2(L− c)k1 − 2k21

]
if k1 ∈ [L−c

2 , L2 ],

1
H−L

[
2cH−c2

2 − 2ck1

]
if k1 ∈ [L2 ,

H−c
2 ],

1
H−L

[
H2

2 − 2Hk1 + 2k21

]
if k1 ∈ [H−c

2 , H2 ],

0 if k1 ∈ [H2 ,∞).

(4)

The curve ABCD in Figure 1 depicts the shape of this expected marginal revenue.

As Figure 1 suggests, firm 1’s expected marginal revenue, MRm(k1), is continuous and

decreasing with respect to plant size. Since MRm(k1) is strictly decreasing in the interval of

(0, c) and r ∈ (0, c) under A.2, the first-order condition,

MRm(k1) = r,

is the necessary and sufficient condition for the expected profit maximization problem of (3). In

other words, the curve ICD is the demand curve for a nuclear plant’s capacity k1 if we consider

r as the price of the capacity. Solving the last equation for k1 yields the optimal capacity of the

nuclear power plant for the monopolist as follows:

17We provide a supplementary material that helps readers to replicate the computation of (4).
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Lemma 1 Suppose A.1–A.3. Then,

km1 =



1
2

(
L− c+

√
2(c− r)(H − L)

)
if r ∈

[
c− c2

2(H−L) , c
)
,

c(2H−c)−2r(H−L)
4c if r ∈

[
c2

2(H−L) , c−
c2

2(H−L)

]
,

1
2

(
H −

√
2r(H − L)

)
if r ∈

(
0, c2

2(H−L)

]
.

(5)

The first, second, and third lines of (5) correspond to the regions km1 ∈ (L−c
2 , L2 ], km1 ∈

[L2 ,
H−c
2 ], and km1 ∈ [H−c

2 , H2 ), respectively (IJ, JK, and KD in Figure 1, respectively). From this

result and (1), r > c2

2(H−L) guarantees ym1 (H) > 0 while ym1 (L) is always zero. In other words,

unless the nuclear plant is sufficiently efficient, gas-fired power generation technology is utilized

when the market demand turns out to be high while nuclear power generation always serves the

base-load portion of the demand.

In building up the capacity of a nuclear power plant, firm 1 faces a trade-off between saving

its production cost and hedging against risk. If the demand is not so volatile, the firm would

prefer to generate electricity from nuclear power, since this mode of production is less costly

than gas-fired power generation, as in A.2. However, under uncertain demand, it is risky to

build a nuclear plant with an enormous capacity, because a part of its capacity can end up being

excessive when demand turns out to be fairly low. The cost of building up this excess capacity

cannot be recovered, as it is already sunk when the actual demand size is revealed. Gas-fired

power plants are expected to play a role in high demand cases unless the value of r is sufficiently

small to dwarf the cost consideration in comparison with this risk-hedge aspect.

The threshold value of r, which guarantees ym1 (H) > 0, can be rearranged as

c2

2(H − L)
=

c2

4
√

3Var(A)
,

which implies that, when Var(A) is sufficiently large, gas-fired power generation technology is

utilized even for a lower value of r.18 A high capacity-building cost of a nuclear plant reduces

the cost advantage of nuclear power generation. Similarly, a higher volatility of market demand

18Note that, since ym
1 (A) is non-decreasing in A by (1), ym

1 (A) = 0 for all A ∈ [L,H] if ym
1 (H) = 0.
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enhances the risk of increasing the capacity of a nuclear plant. Thus, the values of r and Var(A)

have similar effects in the nuclear capacity consideration, and their increases discourage the

establishment of a nuclear power plant of a significant scale.

4 Effects of competition

In this section, we analyze the case in which firm 2 enters the electricity market as a new

competitor to firm 1. We suppose that, whereas firm 1 can use both nuclear and gas-fired power

plants, firm 2 can employ only gas-fired power generation technology in its electricity production.

4.1 Quantity-setting stage

If all the electricity in the market is produced at gas-fired power plants, firm i’s reaction function

in the final quantity-setting stage is obtained by maxqi pqi − cqi as

RF
i (qj ;A) = max[

A− c− qj
2

, 0],

where i = 1, 2 and i ̸= j. However, if all of firm 1’s electricity supply is produced at its nuclear

power plant, its reaction function in this stage is obtained by maxq1 pq1 as

RN
1 (q2;A) = max[

A− q2
2

, 0].

Thus, since x1 ≤ k1, firm 1’s reaction function given k1 and A is

R1(q2; k1, A) =


RF

1 (q2;A) if q2 ≤ RF
1
−1

(k1;A),

k1 if RF
1
−1

(k1;A) ≤ q2 ≤ RN
1

−1
(k1;A),

RN
1 (q2;A) if RN

1
−1

(k1;A) ≤ q2.

As Figure 2 shows, firm 1’s reaction function (the bold line) has kinks at the predetermined

maximum capacity of its nuclear power plant, k1.

Since firm 2 cannot use nuclear power generation technology, firm 2’s reaction function is
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always given by RF
2 (q1;A). The Nash equilibrium outcomes for given k1 and A are obtained at

the intersection of these two reaction functions as follows:19

If k1 ∈ [0, A−c
3 ] ⇔ A ∈ [3k1 + c,∞),

x∗1(k1;A) y∗1(k1;A)

· y∗2(k1;A)

 =

k1 A−c
3 − k1

· A−c
3

 ,

q∗1(k1;A)

q∗2(k1;A)

 =

A−c
3

A−c
3

 , p∗(k1;A) =
A+ 2c

3
.

(6)

If k1 ∈ [A−c
3 , A+c

3 ] ⇔ A ∈ [3k1 − c, 3k1 + c],

x∗1(k1;A) y∗1(k1;A)

· y∗2(k1;A)

 =

k1 0

· A−c−k1
2

 ,

q∗1(k1;A)
q∗2(k1;A)

 =

 k1

A−c−k1
2

 , p∗(k1;A) =
A− c− k1

2
.

(7)

If k1 ∈ [A+c
3 ,∞) ⇔ A ∈ (0, 3k1 − c],

x∗1(k1;A) y∗1(k1;A)

· y∗2(k1;A)

 =

A+c
3 0

· A−2c
3

 ,

q∗1(k1;A)
q∗2(k1;A)

 =

 A+c
3

A−2c
3

 , p∗(k1;A) =
A+ c

3
. (8)

Similarly to the monopolist problem in the previous section, firm 1’s equilibrium production

plan is differentiated into three distinct cases. When A > 3k1 + c (high-demand case), firm 1

utilizes gas-fired power plants. Otherwise, firm 1 utilizes only nuclear power; when 3k1 + c >

A > 3k1 − c (intermediate case), firm 1’s nuclear power plant is at full operation; but when

A < 3k1 − c (low-demand case), the firm ends up with idle capacity. Note that in any of the

three cases, firm 2 always produces some electricity by using gas-fired power technology.

From these results, for given values of k1 and A, we obtain firm 1’s profit excluding the cost

19Note that, from A.3, we have an interior solution with respect to q1 and q2 for all A ∈ [L,H].
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of developing the nuclear plant capacity as20

π∗
1(k1;A) =



(A−c)2

9 + k1c if k1 ∈ [0, A−c
3 ] ⇔ A ∈ [3k1 + c,∞],

k1(A+c−k1)
2 if k1 ∈ [A−c

3 , A+c
3 ] ⇔ A ∈ [3k1 − c, 3k1 + c],

(A+c)2

9 if k1 ∈ [A+c
3 ,∞) ⇔ A ∈ (0, 3k1 − c].

4.2 Capacity-setting stage

Firm 1’s expected profit maximization problem in the initial capacity-setting stage is given by

max
k1

1

H − L

∫ H

L
π∗
1(k1; a)da− rk1. (9)

Let k∗1 be the solution to this problem; that is, the equilibrium capacity of its nuclear plant

under the duopoly with a new entrant.

Given H−c
3 > L+c

3 by A.1, firm 1’s marginal expected revenue in this stage, MR∗(k1), is

given as follows:21

∂

∂k1

1

H − L

∫ H

L
π∗
1(k1; a)da =



c if k1 ∈ [0, L−c
3 ],

1
H−L

[
4cH−(L+c)2

4 + (L− c)k1 − 3
4k

2
1

]
if k1 ∈ [L−c

3 , L+c
3 ],

1
H−L [cH − 2ck1] if k1 ∈ [L+c

3 , H−c
3 ],

1
H−L

[
(H+c)2

4 − (H + c)k1 +
3
4k

2
1

]
if k1 ∈ [H−c

3 , H+c
3 ],

0 if k1 ∈ [H+c
3 ,∞].

(10)

The curve ABEFCG in Figure 1 depicts the shape of this expected marginal revenue.

As Figure 1 shows, although the expected marginal revenue increases above c at first, it is

continuous and strictly decreasing when MR∗(k1) is in the interval of (0, c). Therefore, by A.2,

the first-order condition,

MR∗(k1) = r, (11)

20π∗
1 is not differentiable but it is continuous in k1.

21We provide a supplementary material that helps readers to replicate the computation of (10).
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is the necessary and sufficient condition for the maximization problem in (9). In other words,

the curve MFCG in Figure 1 is firm 1’s demand curve for the capacity k1 in the presence of a

competitor. Solving it for k1 yields the following result:

Lemma 2 Suppose A.1–A.3. Then,

k∗1 =


cH−r(H−L)

2c if r ∈
[
c− c(2H−3L−2c)

3(H−L) , c
)
,

1
3

(
2H + 2c−

√
(H + c)2 + 12r(H − L)

)
if r ∈

(
0, c− c(2H−3L−2c)

3(H−L)

]
.

(12)

Proof See Appendix A.

If r is within the range of the first line of (12), k∗1 ∈ [L+c
3 , H−c

3 ] (MF in Figure 1), and, if r

is within the range of the second line of (12), k∗1 ∈ [H−c
3 , H+c

3 ] (FG in Figure 1). Therefore, by

(6), y∗1(H) > 0 if and only if r > c− c(2H−3L−2c)
3(H−L) .22 In other words, gas-fired power generation

technology is used to meet high demand when the nuclear power plant is not sufficiently efficient.

Again, the threshold value of r is obtained as

c− c(2H − 3L− 2c)

3(H − L)
=

c(H + 2c)

3(H − L)
=

c(E(A) + 2c)

6
√

3Var(A)
+

c

6
.

Thus, if Var(A) increases while preserving the mean E (A), gas-fired power plants are utilized

even with a lower value of r.23 This is because increasing the capacity of a nuclear plant,

while lowering the unit production cost, implies heightened exposure to the risk of carrying idle

capacity, similar to the case of a monopolist in the previous section.

4.3 Comparison

The following proposition summarizes how the entry of firm 2 changes the capacity of a nuclear

power plant when compared to the monopoly case. The equilibrium capacity of a nuclear

power plant expands under competition if and only if the nuclear plant is sufficiently inefficient

22This value is strictly smaller than c because 2H − 3L− 2c > 0 by A.1.
23Note that since y∗

1(A) is non-decreasing in A by (6)–(8), y∗
1(A) = 0 for all A ∈ [L,H] if y∗

1(H) = 0.
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(r > r̂).24

Proposition 1 Suppose A.1–A.3. Then, there exists r̂ ∈ (0, c) such that

k∗1 ⋚ km1 ⇔ r ⋚ r̂.

Proof See Appendix A.

Surprisingly, when a new entrant is introduced to the market, nuclear power generation

technology increases its overall presence provided that it is sufficiently inefficient. The source

of this capacity expansion is a strategic effect against a new competitor, which arises due to

the relative cost structures of the nuclear and gas-fired power generation technologies. Since a

nuclear plant has a lower marginal production cost in the quantity-setting stage, by raising its

capacity, firm 1 can effectively commit itself to a larger production level and deter the production

of its competitor (firm 2). This strategic effect encourages firm 1 to develop a larger capacity

of its nuclear plant.25 However, the introduction of a competitor into the market also has an

opposing effect. A new entrant competes for a part of the electricity demand in a duopoly

market, and this effect alone reduces the capacity of a nuclear power plant of the incumbent

(firm 1). In other words, production substitution from firm 1 to firm 2 discourages firm 1 from

increasing the capacity of its nuclear plant.26

Why does the former strategic effect (positive effect) dominate the latter production substi-

tution effect (negative effect), particularly when the nuclear plant is sufficiently inefficient? The

intuition behind this result is as follows. When r is sufficiently large (r > r̂), according to the

trade-off between cost saving and risk management, only a small portion of firm 1’s electricity

24If A.1. is violated, that is, Var(A) ≤ (L+ 2c)2/48, it is possible to have k∗
1 < km

1 for all r ∈ (0, c). However,
even in such a case, if we suppose r > c, we have k∗

1 > km
1 unless r is so high that k∗

1 = km
1 = 0 holds. This

is because, when r > c, unless r is extremely high, a nuclear plant is built under duopoly in order to deter firm
2’s production (indeed, we have a region where MR∗(k1) > c). If r > c, no nuclear plant is established under
monopoly, since it has no cost advantage but simply exposes the firm to the risk of carrying an idle capacity.

25This strategic effect is essentially the same as the entry deterrence effect of cost-reducing investment studied
in Dixit (1980). The investment cost and associated reduction in the marginal production cost in Dixit (1980)
corresponds to the relatively high set-up cost and relatively low production cost of a nuclear power plant in our
context.

26For the general principle of production substitution, see Lahiri and Ono (1988).
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r large (r > r̂) small (r < r̂)

strategic effect ++ +
production substitution effect − −−

total effect + −

Table 1: Effects of competition on nuclear capacity

supply is produced by nuclear power technology under a monopoly to begin with. Then, after

the entry, an increase in firm 1’s nuclear capacity deters firm 2’s production more effectively

than the case in which a large portion has already been produced by nuclear power because of

a smaller r. Hence, the positive strategic effect is relatively large (represented by double + in

Table 1) when r is larger. By contrast, the negative effect of production substitution is relatively

small (represented by single − Table 1) when nuclear power is a small portion of firm 1’s power

source. This is because the production substitution effect contributes to a reduction of firm

1’s nuclear capacity only when its electricity supply produced by nuclear power is replaced by

firm 2’s supply produced by gas-fired power. When gas-fired technology is utilized on a large

scale, the production substitution effect does not have a significant effect on the nuclear capac-

ity. Therefore, when r is sufficiently large, the former positive strategic effect is more likely to

dominate the negative effect of production substitution (represented by single + of total effect

in Table 1). In the opposite case, where r is sufficiently small (r < r̂), the negative production

substitution effect overwhelms the positive strategic effect, as shown in the second column of

Table 1.

5 Environmental implications

In the presence of a carbon tax, the marginal production cost, c, is considered to be comprised

of two components: c0, which is the marginal production cost by gas-fired technology, and t,

which is a unit tax imposed on carbon emissions (or equivalently, electricity production in our

model) by gas-fired power plants. In this section, we reinterpret the previous result with respect

to the level of c above, and discuss environmental implications of imposing a carbon tax, in view

of c = c0 + t.

In particular, we find that the nuclear capacity tends to decrease with the introduction of
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a competitor when the prevailing level of carbon tax is sufficiently high, as in the following

proposition.27

Proposition 2 Suppose A.1–A.3. Then, there exists ĉ ∈ (0, L/2) such that

k∗1 ⋚ km1 ⇔ c ⋛ ĉ.

if and only if r < r̂|c=L/2, or r = r̂|c=L/2 and V ar(A) < 9L2/48, where

r̂|c=L
2
=

L

12

(
4

√
(H − L

2
)2 + L2 − 4H − 5L

2

)
> 0.

Proof See Appendix A.

An imposition of a high tax on gas-originated electricity may seem to give a competitive

advantage to nuclear power generation technology. However, the capacity of a nuclear plant

actually decreases when the incumbent anticipates a competitor’s entry for a sufficiently high

level of carbon tax. In fact, Proposition 2 is a straightforward extension of Proposition 1, which

states that the introduction of a competitor decreases nuclear capacity when r is relatively small

for a given level of c. In essence, the nuclear capacity shrinks with the entry when the difference

between c and r is sufficiently significant.

When a carbon tax has been implemented before the capacity of nuclear power is chosen, such

a tax has an additional influence upon the effects of competition in choosing the nuclear capacity.

In the circumstance where the level of the carbon tax is sufficiently significant relative to the

capacity-building cost of a nuclear power plant, an environmental issue associated with carbon

emissions is more pressing. Then, the government would welcome a shift from a carbon-emitting

technology to a carbon-free technology. However, when a market deregulation is anticipated or

taken place concurrently, the environmental performance of a carbon tax can be compromised

because the incumbent reduces its nuclear capacity especially in a case with a high level of the

27Note that c ∈ (r, L/2) by A.2 and A.3. Thus, if ĉ ≤ r, Proposition 2 implies that k∗
1 < km

1 for all the allowed
levels of c.
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tax.

As a caveat, the necessary and sufficient condition for inducing this result is indicated in the

latter part of this proposition, which requires that the capacity-building cost of a nuclear power

plant r, as well as the volatility of demand V ar(A), should not be too large. If the condition is

violated, it is possible that k∗1 never exceeds km1 even for a high value of c.

6 Simulation

To obtain further insights from the implications of our model, we conduct simple simulation

analyses of two numerical examples: a case with low demand volatility (H = 4, L = 2, and

c = 0.4), and one with high demand volatility (H = 5, L = 1, and c = 0.4). The latter case has

a higher V ar(A) than the former while both cases share the same mean E(A) = 3.28

First, we discuss how the equilibrium management of the nuclear power plant is affected

by the marginal capacity cost and the demand volatility. Figure 3 shows how a change in the

value of r affects the expected market shares of electricity generated by nuclear power generation

technology in each case, that is, EA

[
xm
1 (km1 ;A)

qm1 (km1 ;A)

]
in the monopoly case and EA

[
x∗
1(k

∗
1 ;A)

q∗1(k
∗
1 ;A)+q∗2(k

∗
1 ;A)

]
in the duopoly case, and the respective expected operating rates of the nuclear power plant, that

is, EA

[
xm
1 (km1 ;A)

km1

]
in the monopoly case and EA

[
x∗
1(k

∗
1 ;A)

k∗1

]
in the duopoly case. These results

can be understood based on the discussion of Lemma 1. As r becomes smaller, the expected

market share of the nuclear power generation increases, since gas-fired power plants tend to be

utilized at a smaller scale owing to the cost advantage of a nuclear power plant. Nonetheless,

the expected operating rate of the nuclear power plant decreases, since the firm cares less about

the risk of being saddled with excess capacity when r is relatively small. Demand volatility

accelerates these tendencies.

Next, we discuss how competition influences the use of nuclear power technology. We sum-

marize the simulation results of our two cases with high and low demand volatility in Fig-

ure 4. The graphs depict how much the respective equilibrium values under duopoly differ

from those under monopoly, that is, k∗ − km for the equilibrium capacity of the nuclear plant,

28The volatility sizes are not too far from the actual size reported for France (Léautier, 2018).
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EA(x
∗
1(k

∗;A))− EA(x
m
1 (km;A)) for the expected nuclear power outputs, and so forth.

As Proposition 1 shows, competition increases the equilibrium capacity size of the nuclear

plant if and only if r is sufficiently large (top-left panel). Its threshold value, r̂, is lower in the

case with high demand volatility (r̂H in the figure) than in the case with low demand volatility

(r̂L in the figure).

The difference in the expected total outputs is always positive (top-right panel). Indeed, as

is typically the case with a standard duopoly model, we can analytically show that the expected

total output increases because of the added competition,29 that is,

EA[q
∗
1(k

∗
1;A) + q∗2(k

∗
1;A)] > EA[q

m
1 (km1 ;A)]. (13)

Note that this is true even when the capacity of a nuclear power plant shrinks.

To obtain a positive difference of the expected outputs generated by the nuclear power

technology, r must be higher than r̂ in both cases with high and low demand volatility (middle-

left panel). Because the new entrant steals a portion of business from the incumbent with a

nuclear plant, the output from the nuclear plant does not necessarily increase even when its

capacity expands (right-hand side of the dotted line). By contrast, the output of the nuclear

plant necessarily decreases if its capacity shrinks (left-hand side of the dotted line). Indeed, we

can analytically show that30

EA(x
∗
1(k

∗;A)) < EA(x
m
1 (km;A)) (14)

if k∗ < km.

Thus, from (13) and (14), if the capacity of a nuclear power plant under duopoly is smaller

than that under monopoly (k∗ < km), the market share of nuclear power generation necessarily

decreases (left-hand side of each dotted line in bottom-left panel). This implies that, when the

nuclear power generation technology is sufficiently efficient, introducing competition decreases

the market share of the nuclear technology as an electric power source.

29The formal proof is available upon request.
30The formal proof is available upon request.
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Even if k∗ > km, the market share of the nuclear power may not increase. This is because,

as mentioned above, competition always increases the total output, and at the same time can

decrease the output of the nuclear plant even when k∗ > km holds. For instance, in our case

with low demand volatility, the difference in the market shares of the nuclear power generation

is always negative regardless of the value of r (bottom-left panel). However, for our case with

high demand volatility, it is possible for nuclear power to increase its overall market share as a

power source when the nuclear power generation technology is sufficiently inefficient (bottom-left

panel).

7 Concluding remarks

In this study, we investigated how the introduction of a competitor affects the behavior of an

electricity producer and discussed its implications for the resulting market shares of different

electric power sources. Specifically, we considered the case in which a new competitor with

no access to technologies that require significant capacity-building cost, such as nuclear power,

enters a market that was originally served by a local monopolist. As our main result, we found

that a sufficiently high cost of operationalizing a nuclear power plant leads to larger capacity

for nuclear power generation in the duopoly case than in the monopoly environment. We also

reinterpreted this result from a perspective of environmental policy.

The cost of operationalizing a nuclear power plant is becoming significantly higher in Japan

especially because stricter regulations are being implemented in the wake of the Fukushima-

Daiichi accident in 2011 and opinions against nuclear power generation are gaining further

popularity in both the news media and political arenas. Our analysis suggests that this trend

may paradoxically lead to larger presence of nuclear power generation when the deregulation of

the local electricity market is anticipated. The deregulation of regional power markets in Japan

has been under way for quite some time now and has gained steam especially after the accident.

Furthermore, whereas the entry of a competitor into a formerly monopolized electricity

market always increases the consumer surplus in our context, our analytical findings would hint

at the possibility of welfare-worsening deregulation provided that the cost of developing a nuclear
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power plant is sufficiently high. A full analytical investigation of welfare-related outcomes is left

for future research.31
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[16] Léautier, T. (2018). Imperfect Markets and Imperfect Regulation, MIT Press.

[17] Milstein, I. and Tishler, A. (2012). “The inevitability of capacity underinvest-

ment in competitive electricity markets,” Energy Economics, 34, 62-77. doi:

10.1016/j.eneco.2011.07.004

[18] Murphy, F. and Smeers, Y. (2005). “Generation capacity expansion in imperfectly

competitive restructured electricity markets,” Operations Research, 53, 646-661. doi:

10.1287/opre.1050.0211

[19] The Mainichi (2019). “Japan nuclear plant costs increase 5-fold over 6 years to 5.4 trillion

yen,” November 16, 2019, https://mainichi.jp/english/articles/20191116/p2a/00m/

0na/004000c, accessed on February 28, 2020.

22



[20] Tishler, A., Milstein, I., and Woo, C. (2008). “Capacity commitment and price

volatility in a competitive electricity market,” Energy Economics, 30, 1625-1647. doi:

10.1016/j.eneco.2007.03.005

[21] Spencer, B. and Brander, J. (1992). “Pre-commitment and flexibility: applications

to oligopoly theory,” European Economic Review, 36, 1601–1626. doi: 10.1016/0014-

2921(92)90008-K

APPENDIX

A Proofs

Proof of Lemma 2. First, note that MR∗(k1) ≥ c when k1 ≤ L+c
3 , and also that

MR∗(k1) = 0 when k1 ≥ H+c
3 . The former is true because MR∗(k1) is quadratic and con-

vex upward in k1 when k1 ∈ [L−c
3 , L+c

3 ] and

MR∗
(
L− c

3

)
= c, MR∗

(
L+ c

3

)
= c+

c(L− 2c)

3(H − L)
> c.

Therefore, we have k∗1 ∈ (L+c
3

H+c
3 ) by A.2 and (11).

Next, observe that MR∗(k1) is strictly decreasing for k1 ∈ [L+c
3 , H+c

3 ]. The decline of

MR∗(k1) for k1 ∈ [L+c
3 , H−c

3 ] is clear by (10) and that for k1 ∈ [H−c
3 , H+c

3 ] is implied by the

following three facts: (i) MR∗(k1) is quadratic and convex downward in k1 for k1 ∈ [H−c
3 , H+c

3 ],

(ii) MR∗(H−c
3 ) > 0, and (iii) MR∗(H+c

3 ) = 0. Note that MR∗(H−c
3 ) > 0 is induced from the

second equality of the following expression:

MR∗
(
H − c

3

)
=

c(H + 2c)

3(H − L)
= c− c(2H − 3L− 2c)

3(H − L)
. (A.1)

Therefore, the second-order condition is globally satisfied for k1 ∈ [L+c
3 , H+c

3 ].

From the third term in (A.1), MR∗(H−c
3 ) < c by A.1, which is equivalent to 2H−3L−2c > 0

since Var(A) = (H−L)2

12 . Hence, for r ∈ [MR∗(H−c
3 ), c), we have k∗1 ∈ (L+c

3 , H−c
3 ] and for
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r ∈ (0,MR∗(H−c
3 )], we have k∗1 ∈ [H−c

3 , H+c
3 ). Notice that this is because MR∗(k1) is strictly

decreasing for k1 ∈ [L+c
3 , H+c

3 ]. Therefore, by substituting the expression (10) in each case,

solving the first-order condition (11) yields the result of Lemma 2. Q.E.D.

Proof of Proposition 1. Lemmas 1 and 2 imply

lim
r→0

k∗1 =
H + c

3
< lim

r→0
km1 =

H

2
.

where the inequality holds by A.3. In other words, we have k∗1 < km1 when r is sufficiently close

to 0. Furthermore, Lemmas 1 and 2 imply

lim
r→c

k∗1 =
L

2
> lim

r→c
km1 =

L− c

2
.

In other words, we have k∗1 > km1 when r is sufficiently close to c. Hence, MRm(k1) and MR∗(k1)

intersect at least once on (0, c) by their continuity.

Thus, the proof is complete if MRm(k1) and MR∗(k1) intersect exactly at a single point on

(0, c) (see figure 1). In terms of absolute values, (i) the slope of MRm(k1) is smaller than or

equal to 2c
H−L for all k1 by (4) and (ii) the slope of MR∗(k1) is larger than or equal to 2c

H−L

when k1 >
L+c
3 by (10). Observe that (i) is true since the slope of MRm(k1) equals − 2c

H−L when

k1 ∈ (L2 ,
H−c
2 ), and we have the following relations:

∂MRm

∂k1
(k1) = −2(L− c) + 4k1

H − L
>

∂MRm

∂k1

(
L

2

)
= − 2c

H − L
, (A.2)

∂MRm

∂k1
(k1) = −2H − 4k1

H − L
>

∂MRm

∂k1

(
H − c

2

)
= − 2c

H − L
, (A.3)

where (A.2) holds for k1 ∈ (L−c
2 , L2 ) and (A.3) holds for k1 ∈ (H−c

2 , H2 ). Notice that the

inequalities of (A.2) and (A.3) hold because MRm(k1) is decreasing, and quadratic functions

convex upward and downward in respective regions. Furthermore, we observe that (ii) is true
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since the slope of MR∗(k1) equals − 2c
H−L for k1 ∈ (L+c

3 , H−c
3 ), and we have

∂MR∗

∂k1
(k1) = −2(H + c)− 3k1

2(H − L)
<

∂MR∗

∂k1

(
H + c

3

)
= − H + c

2(H − L)
< − 2c

H − L
, (A.4)

for k1 ∈ (H−c
3 , H+c

3 ). Notice that the first inequality holds because MR∗(k1) is a quadratic

function convex upward and decreasing for k1 ∈ (H−c
3 , H+c

3 ) and that the final inequality holds

since A.1 and A.3 imply that H > 4c. Moreover, if the slopes of both MR∗(k1) and MRm(k1)

are equal to − 2c
H−L for some k1, then

MR∗(k1) =
cH − 2ck1
H − L

> MRm(k1) =
cH − 2ck1
H − L

− c2

2(H − L)
, (A.5)

by (10) and (4). Hence, MR∗(k1) and MRm(k1) never intersect at more than one point. Q.E.D.

Proof of Proposition 2. We start by explicitly deriving r̂ provided in Proposition 1. In

Figure 1, this threshold is obtained as the level of r at intersection C. Let the corresponding

level of k1 at this threshold be k̂. From (A.5), we have already seen that the intersection never

lies above point F in the figure. Moreover, when r = c2/2(H −L), by Lemmas 1 and 2, we have

km1 − k∗1 =
H − c

2
− 1

3

(
2H + 2c−

√
(c+H)2 + 6c2

)
≡ F (H, c) > 0.

Here, the positivity is obtained from H > 4c by A.1 and A.3 as well as F (4c, c) > 0, and

∂F/∂H > 0 for H > 4c. Thus, MRm and MR∗ must intersect when MRm (MR∗) is in the

case in which k1 ∈ [L2 ,
H−c
2 ] (k1 ∈ [H−c

3 , H+c
3 ]). Thus, by solving MRm = MR∗ in these cases,

we obtain k̂ = (2(H − c) −
√
α)/3, where α = (H − c)2 − 6c2. Note that α > 0 by H − c > 3c

(recall H > 4c by A.1 and A.3). Plugging k = k̂ into MRm yields r̂ as a function of c:

r̂(c) =
c

6

(
5c− 2H + 4

√
α
)
.

In the following, we show the requested result by applying this expression of r̂ to Proposition
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1. First, it should be noted that r̂(c) is single–peaked at c = H/5. This is because we have

∂r̂(c)

∂c
=

(5c−H) (
√
α− 2(H + 2c))

3
√
α

.

In addition, the value within the second parentheses in the numerator is smaller than
√
(H − c)2−

2(H + 2c) = −H − 5c < 0. Thus,

∂r̂

∂c
⋚ 0 ⇔ 5c−H ⋛ 0. (A.6)

Now, suppose that r ≤ r̂(L/2) and L/2 > H/5 (or, V ar(A) < 9L2/48) where

r̂

(
L

2

)
=

L

12

(
4

√
(H − L

2
)2 + L2 − 4H − 5L

2

)
> 0.

Then, because of the single peaked property of r̂(c), we have r ≤ r̂(H/5), and r̂(c) is strictly

increasing in c ∈ (0,H/5]. Thus, by also noting r > r̂(0) = 0,

∃ĉ ∈ (0,H/5], ∀c ∈ (0,H/5], r̂(c) ⋛ r ⇔ c ⋛ ĉ. (A.7)

Furthermore, L/2 > H/5 implies that for c ∈ (H/5, L/2), r̂(c) > r̂(L/2) ≥ r by (A.6). From

this and (A.7), we obtain

∃ĉ ∈ (0, L/2), ∀c ∈ (0, L/2), r̂(c) ⋛ r ⇔ c ⋛ ĉ. (A.8)

By Proposition 1, r̂(c) ⋛ r in (A.8) is equivalent to k∗1 ⋚ km1 , which is the requested result.

Next, suppose that r ≤ r̂(L/2) and L/2 ≤ H/5 (or, V ar(A) ≥ 9L2/48). Then, similarly to

(A.7), we obtain

∃ĉ ∈ (0, L/2], ∀c ∈ (0, L/2], r̂(c) ⋛ r ⇔ c ⋛ ĉ. (A.9)

In particular, when r < r̂(L/2), we have ĉ < L/2, and thus, the same result as (A.8) is obtained.

However, when r = r̂(L/2), we obtain ĉ = L/2. Hence, (A.9) implies that for all c ∈ (0, L/2),

we have r̂(c) < r, which gives k∗1 > km1 by Proposition 1.
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Finally, suppose that r > r̂(L/2). Then, if there exists ĉ ∈ (0, L/2) such that r̂(c) > r for all

c ∈ (ĉ, L/2), r̂(L/2) ≥ r must hold by the continuity of r̂(c), which is a contradiction. Q.E.D.

B Price-regulated monopolist

Here, we consider a case where the electricity price charged by a monopolist, firm 1, is capped

at p̄ ∈ [c, L]. The firm is obligated to meet all the demand under this regulated price.

B.1 Quantity-setting stage

In the production stage, firm 1 must supply q̄1(A) = A − p̄, but they can choose x1 and y1 to

minimize its variable cost:

min
x1,y1

0 · x1 + cy1 s.t. x1 ≤ k1, x1 + y1 = q̄1(A)

The equilibrium outcomes for given k1 and A are as follows.

(x̄1(k1;A), ȳ1(k1;A)) =


(k1, A− p̄) if k1 ∈ [0, A− p̄] ⇔ A ∈ [k1 + p̄,∞)

(A− p̄, 0) if k1 ∈ [A− p̄,∞) ⇔ A ∈ (0, k1 + p̄]

Note that in both cases, q1 = A−p̄ and p = p̄ due to the price regulation. Then, the monopolist’s

profit without the set-up cost of capacities is given by

π̄1(k1;A) =


(p̄− c)(A− p̄) + ck1 if k1 ∈ [0, A− p̄] ⇔ A ∈ [k1 + p̄,∞)

(A− p̄)p̄ if k1 ∈ [A− p̄,∞) ⇔ A ∈ (0, k1 + p̄].
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B.2 Capacity-setting stage

In the capacity-setting stage, firm 1 maximizes the expected profit by choosing the capacity of

a base-load technology, i.e.,

max
k1

1

H − L

∫ H

L
π̄1(k1; a)da− rk1. (B.1)

Let k̄1 be the solution of this problem, that is, the equilibrium capacity of the base-load tech-

nology in the monopoly market.

Firm 1’s marginal expected revenue in the first stage, M̄R(k1), is as follows.

d

dk1

1

H − L

∫ H

L
π̄1(k1; a)da =


c if k1 ∈ [0, L− p̄]

1
H−L [c(H − p̄)− ck1] if k1 ∈ [L− p̄, H − p̄]

0 if k1 ∈ [H − p̄,∞)

(B.2)

Therefore, by A.2, the first order condition, M̄R(k1) = r, is the necessary and sufficient condition

for the problem (B.1).

We compare this regulated monopoly outcome with that of the deregulated duopoly that is

detailed in Section 4.

Proposition 3 Suppose A.1-A.3. Then,

∣∣∣∣dM̄R(k1)

dk1

∣∣∣∣ < ∣∣∣∣dMR∗(k1)

dk1

∣∣∣∣
for all k1 such that M̄R(k1),MR∗(k1) ∈ (0, c).

Proof In the proof of Proposition 1, we have already shown that, in terms of its absolute

value, the slope of MR∗ is larger than or equal to 2c
H−L when MR∗ ∈ (0, c) while the slope of

M̄R is equal to c
H−L when M̄R ∈ (0, c) by (B.2). Q.E.D.

Thus, if the curves M̄R(k1) and MR∗(k1) ever cross, they do so only once, and the simi-

lar relationship to Proposition 1 holds: an introduction of competition (accompanied by price
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deregulation) increases the capacity of a base-load technology if and only if r is sufficiently large.

As a caveat, we must note that M̄R(k1) and MR∗(k1) do not necessarily cross because the

supply under the price regulation depends on the level of a regulated price. For instance, if the

regulated price is sufficiently low (close to c) and the obligated supply becomes sufficiently large,

it is possible that M̄R > MR∗ holds everywhere, and the capacity of a base-load technology

under competition k∗1 never exceeds that under the price-regulated monopoly for all r ∈ (0, c).
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Figure 1: Expected marginal revenue with respect to the nuclear plant’s capacity k1 (ABCD is
in the case of monopoly and ABEFCG is in the case of duopoly.
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Figure 2: Reaction function of firm 1 given its nuclear plant’s capacity k1

Figure 3: Equilibrium management of nuclear power (“Low volatility” simulates a case with low
demand volatility, and “High volatility” simulates a case with high demand volatility.)
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Figure 4: Effect of competition (The graphs depict how much the respective equilibrium values
under duopoly differ from those under monopoly.)
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