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1 Introduction

Since Pigou’s (1932) seminal work, it is well known that in perfectly competitive markets,

the optimal emission tax rate on a harmful emission is equal to the marginal environ-

mental damage caused by the emission, and that this tax policy leads to the first-best

optimality. The tax that internalizes the negative externality of emission is known as

“Pigovian tax.” In imperfectly competitive markets, however, this Pigovian tax is not

optimal (Buchanan, 1969; Barnett, 1980; Misiolek, 1980; Baumol and Oates, 1988). In

a monopoly market, the monopolist’s production level falls short of the optimal. To

mitigate the welfare loss due to suboptimal production level, the emission tax rate in

monopoly markets should be lower than the Pigovian rate. However, this low tax rate

distorts the incentive for the monopolists’ emission abatement activities, and thus reduces

welfare. Therefore, the first-best optimality is not achieved by the emission tax.

The result that the second-best tax rate is lower than its Pigovian counterpart may

not hold in oligopoly markets. Simpson (1995) investigated Cournot oligopolies. He

showed that the optimal tax rate is lower than the Pigovian if firms are symmetric, and

that the optimal tax rate can be higher than the Pigovian if firms are asymmetric and

the degree of heterogeneity among firms is large. The latter result was derived because

distribution of production among firms as well as the total production level affect welfare

when firms are asymmetric. A higher tax rate induces production substitution from the

firm with inferior emission abatement technology to the firms with superior emission

abatement technology, thus improving welfare.1 However, whether the optimal tax rate

is higher or lower than the Pigovian, the first best is not achieved by the emission tax

policy.2

In this study, we propose a new emission pricing policy based on emission intensity

targets. The government imposes an emission intensity (emission per output) target on

1For the general principle of welfare-improving production substitution, see also Lahiri and Ono
(1988).

2Even if firms are symmetric, the optimal tax rate can be higher and lower than the Pigovian tax in
free-entry markets. See Katsoulacos and Xepapadeas (1995) and Lee (1999). Nonetheless, the first best
is not achieved in their models.
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each firm. Firms that fall short of the target pay the emission tax (or procure emission

permits) according to the extent of shortfall, and firms that overachieve the target receive

the subsidy (or can sell emission permits). We show that the Pigovian tax, whose rate

is the marginal environmental damage, based on the emission intensity target leads to

the first-best optimality under imperfect competition. In other words, we show the

optimality of the policy combination of emission tax and emission intensity regulation.

Emission intensity regulation has a production expansion effect (Ino and Matsumura,

2019),3 and production reduction effect by the Pigovian tax can be offset by choosing

adequate emission intensity targets.4 Our result suggests that the government should

set the tax rate to be marginal social cost of emission (Pigovian tax) without taking

into account the competition structure of each market. The government should consider

industry- or firm-specific conditions only at the stage of imposing emission intensity

targets, not at that of choosing the tax rate.

Both emission pricing policies (such as environmental taxes or tradable permit poli-

cies) and emission intensity regulations are widely observed (Helfand, 1991). For exam-

ple, the Japanese government imposes environmental taxes in Japanese energy markets

including Japanese electric power market as well as emission intensity targets in Japanese

electric power market, both of which are typical oligopoly markets. In addition, sev-

eral intensity regulations are imposed as per the Energy Conservation Act, such as the

Japanese Act of the Rational Use of Energy enacted in 1979 (Matsumura and Yamagishi,

2017). In the literature, many works have compared emission pricing policies and emis-

sion intensity regulation policies in various contexts such as in free-entry markets and

non-free-entry markets, in open economies and closed economies, and so on. It is known

that under perfect competition, the emission pricing policy leads to the first-best whereas

the emission intensity regulation does not. However, under imperfect competition, the

3They showed that this production expansion effect is equivalent to the effect of refunding the emission
tax revenue to consumers.

4For the general property of emission intensity regulation, see Helfand (1991), Farzin (2003), and
Lahiri and Ono (2007). Bőhringer et al. (2017) showed the difficulty in efficient implementation of
emission intensity regulation.
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emission intensity regulations may be superior to the emission pricing policies for welfare,

which become the second-best policies (Besanko, 1987; Helfand, 1991; Montero, 2002;

Lahiri and Ono; 2007; Kiyono and Ishikawa, 2013; Hirose and Matsumura, 2017; Amir

et al., 2018). In contrast, we show the first-best optimality of the combination of two

such standard policies.

Our principle can also apply to portfolio standard policies such as renewable portfolio

standards (RPS), which have been introduced in the electricity markets of many coun-

tries. In an electricity market, the government can regulate the ratio of zero-emission

or renewable power sources, and then open the markets to trading quotas or introduce

taxes. Similarly, the government can set the ratio of zero-emission or ultra-low emission

vehicles in the vehicle manufacturing industry. If a firm does not meet (overachieves)

the target, the firm must buy (sell) the permits or pay (receive) the tax. If the marginal

social damage due to the use of non-renewable power sources or gasoline and diesel ve-

hicles equals the price of the quotas or tax, the first-best optimum can be achieved with

appropriate targets.5

The remainder of this paper is organized as follows. Section 2 formulates the basic

model in a homogeneous product market. Section 3 derives our main result. Section 4

discusses how the government can test the optimality of the policy. Section 5 presents

three extensions, namely on the quantity and price competition with product differenti-

ation, on the tradable permit market across industries and on the portfolio standards.

Section 6 concludes this paper.

5The Japanese government set up such schemes in energy markets. The government introduced targets
pertaining to zero-emission power source ratios and a trading quota in the electric power market. It
assigned different targets among firms, and a common price is imposed on all firms in the trading market
(Advisory Committee for Natural Resources and Energy, Ministry of Economy, Trade, and Industry,
2019). The Zero-Emission Vehicle (ZEV) Program in California also uses a similar pricing mechanism.
This program was introduced as part of a California state regulation that requires automakers to sell zero-
emission vehicles such as electric or fuel cell vehicles in California and 10 other states, and the required
number of zero-emission vehicles is linked to the automaker’s overall sales of gasoline and diesel vehicles
within the state (https://ww2.arb.ca.gov/our-work/programs/zero-emission-vehicle-program).
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2 The model

We consider an oligopoly market wherein n firms choose their outputs (Cournot compe-

tition) and abatement levels. For i = 1, . . . , n, qi ≥ 0 is firm i’s output, and ai ≥ 0 is

the level of firm i’s abatement activity. The firms’ products are homogeneous, and the

inverse demand function is p(Q), where Q =
∑n

i=1 qi. We assume that p(Q) is twice con-

tinuously differentiable and p′(Q) < 0 for all Q as long as p > 0. Firm i’s cost function

is ci(qi, ai). We assume that ci(qi, ai) is twice continuously differentiable, ∂ci/∂qi > 0,

∂ci/∂ai > 0,6 and that the function is convex. Firm i’s emission function is ei(qi, ai). We

assume that ei(qi, ai) is twice continuously differentiable, ∂ei/∂qi > 0 and ∂ei/∂ai < 0,

and that the function is convex. The social welfare is defined by

W =

∫ Q

0
p(q)dq −

n∑
i=1

ci(qi, ai)−D

(
n∑

i=1

ei(qi, ai)

)
,

where D(·) is the environmental damage function, which is twice continuously differen-

tiable and convex, and D′ > 0. We assume a unique interior social optimum and market

equilibrium.7

We denote the outcomes at the social optimal by the superscript o. Assuming the

interior solution (i.e., qoi > 0 and aoi > 0), the first-order conditions for the welfare-

maximizing problem are

p(Qo) =
∂ci
∂qi

(qoi , a
o
i ) +D′(Eo)

∂ei
∂qi

(qoi , a
o
i ), (1)

−D′(Eo)
∂ei
∂ai

(qoi , a
o
i ) =

∂ci
∂ai

(qoi , a
o
i ), (2)

where Eo =
∑n

i=1 ei(q
o
i , a

o
i ). The second-order condition is satisfied.

3 Optimal policy

We consider the following emission intensity targets, (θ1, . . . , θn) ≥ 0. Firm i’s emission

intensity is targeted by the government as θi = ei/qi. If firm i emits over (below) this

6We relax this assumption in Section 5.3.
7A sufficient condition for the uniqueness is that p′′ ≤ 0, and ei and ci are strictly convex.
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level, or in other words, ei > θiqi (ei < θiqi), it pays (receives) the tax (subsidy) for the

difference. Firm i’s profit maximization problem is described as

max
qi,ai

p(Q)qi − ci(qi, ai)− t[ei(qi, ai)− θiqi],

where t ≥ 0 is the tax (subsidy) level.

We denote the outcomes at the market equilibrium by the superscript ∗. Assuming

the interior solution (i.e., q∗i > 0 and a∗i > 0), the first-order conditions for firm i are

p′(Q∗)q∗i + p(Q∗) + tθi =
∂ci
∂qi

(q∗i , a
∗
i ) + t

∂ei
∂qi

(q∗i , a
∗
i ), (3)

−t
∂ei
∂ai

(q∗i , a
∗
i ) =

∂ci
∂ai

(q∗i , a
∗
i ). (4)

We assume that the second-order condition is satisfied.8

By comparing (3)–(4) with (1)–(2), we obtain the optimal levels of the emission tax

and emission intensity targets as

to = D′(Eo) > 0, θoi = −p′(Q∗)q∗i
D′(Eo)

> 0. (5)

Proposition 1 Consider a Cournot oligopoly in a homogeneous product market. There

exists (θ1, . . . , θn) such that the policy attains the first-best optimality (i.e., q∗i = qoi and

a∗i = aoi ) if and only if the tax rate is Pigovian (i.e., t = D′(Eo)).

Proof. Sufficiency is obvious since (3) and (4) coincide (1) and (2) when t = to and

(θ1, . . . , θn) = (θo1, . . . , θ
o
n). To prove necessity, we show the contraposition. Suppose that

t ̸= D′(Eo) and take (θ1, . . . , θn) arbitrarily. Then, by (4) and (2),

∂ci(q
∗
i , a

∗
i )/∂ai

∂ei(q∗i , a
∗
i )/∂ai

= −t ̸= −D′(Eo) =
∂ci(q

o
i , a

o
i )/∂ai

∂ei(qoi , a
o
i )/∂ai

.

Therefore, (q∗i , a
∗
i ) never equates to (qoi , a

o
i ) since the first and last terms are not equal.

Q.E.D.

8A sufficient condition for it is p′′ ≤ 0.
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The emission pricing policy based on emission intensity targets attains the first-best

outcome. Moreover, the optimal tax rate is always the traditional Pigovian level, that

is, the marginal environmental damage at the optimal level of total emission. Emission

intensity regulation gives producers an incentive to expand their production to relieve

the regulatory constraint (Ino and Matsumura, 2019). Adjusting for this production

expansion effect, the firm-specific emission intensity target can cancel out the effect

of each firm’s market power. Thus, the emission tax uniformly corrects the negative

externality at the Pigovian level. In Section 5.1, we show that this result is robust

even under more general oligopoly markets including product differentiation and price

competition.

We considered an emission tax based on emission intensity targets. However, we can

replace the emission tax with tradable emission permits. Suppose that a market exists

for tradable permits across industries. The government sets an emission intensity target,

and if a firm does not meet (overachieves) the target, the firm must purchase (can sell)

permits. The government adjusts the total number of permits to equalize the equilibrium

price of the permit to the marginal social cost of emission. Then, the first best is achieved

as long as firms are price takers in the tradable permit market. We formally discuss this

mechanism in Section 5.2. As stated previously, our principle can also apply to portfolio

standard policies. We formally discuss this application in Section 5.3.

4 Testing the optimal level of emission intensity

The government may be aware of the desirable level of the emission price, d = D′(Eo),

and imposes the emission tax according to this level (t = d). However, the government

needs to know the optimal target levels of emission intensity (θo1, . . . , θ
o
n). In order to test

whether the targets are optimal or not, two approaches may be used: (i) the conventional

approach following Lerner’s (1934) rule, which relates to the demand elasticity, and (ii)

the new approach following Weyl and Fabinger’s (2013) idea, which relates to the pass-

through rate. The government can check the optimality of θi by testing whether Eq. (6)
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or (7) is satisfied or not.

Lerner’s approach If the given level of θi is optimal, using the well-known Lerner’s

rule, (5) yields

θoi = −p∗

d

(
dp

dQ

Q∗

p∗

)
q∗i
Q∗ = −p∗

d

s∗i
ϵ∗
, (6)

where p∗ = p(Q∗) is the market price, ϵ∗ = (p∗/Q∗)/(dp/dQ) is the market demand

elasticity, and s∗i = q∗i /Q
∗ is the market share of the firm i at equilibrium. Note that the

data for p∗ and s∗i are available in the current market, and ϵ∗ can be estimated under a

sufficient volatility in market prices and quantities.

If all firms are symmetric, then si = 1/n. Then, the above result implies that

limn→∞ θoi = 0. In other words, if the market is sufficiently competitive, the optimal

policy converges to traditional Pigovian tax.

Weyl and Fabinger’s approach Weyl and Fabinger (2013) argued that the pass-

through rate of tax is an important and a tractable welfare indicator under imperfect

competition. Since the pass-through rate is observed or estimated by measuring the

change in the market price (market information) when a tax rate (government informa-

tion) is altered, from an empirical point of view, it is useful to characterize economic

effects using such measurable indicators.9 Following their spirit and decomposing the

second equation in (5),

θoi = −dp∗/dt

t

q∗i
dQ∗/dt

, (7)

where dp∗/dt and dQ∗/dt approximate the ratio of the differences in the market price

and the market size (market information) to the difference in our tax level (government

information), respectively.10 Thus, if we have sufficient experience in policy alteration or

related data, we can test whether (7) is satisfied.

9Using this idea, Weyl and Fabinger (2013) investigated tax incidence, and Häckner and Herzing
(2016) studied the marginal cost of public funds. Adachi and Fabinger (2017) extended these ideas to
quite general oligopoly models.

10If we adopt the tradable permit scheme, the tax level is replaced by the price of the permits.
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5 Extensions

5.1 Product differentiation and Bertrand competition

We extend the basic model by considering an oligopoly market wherein each firm i =

1, . . . , n produces differentiated products and chooses its output qi (Cournot compe-

tition) or its price pi (Bertrand competition) along with its abatement level ai. Let

q = (q1, q2, . . . , qn) and p = (p1, p2, . . . , pn). Again, we assume a unique interior social

optimum and market equilibrium.

Demand system Following Vives (1999),11 we formulate the demand system, which

is obtained by the representative consumer’s problem, as follows:

max
q

U(q)− pq,

where U is the sub-utility function for these n products. We assume that the Hessian of

U is negative definite (U is strictly concave). From the first-order conditions for qi > 0,

pi =
∂U

∂qi
(q) i = 1, . . . , n, (8)

that is, we obtain the inverse demand system, p(q) = (p1(q), p2(q), . . . , pn(q)). From

the strict concavity of U , the demands are downward-sloping (i.e., ∂pi/∂qi < 0 for all i),

and the system can include both the substitute goods case (i.e., ∂pi/∂qj ≤ 0 for j ̸= i)

and the complement goods case (i.e., ∂pi/∂qj ≥ 0 ). Because the Jacobian of p(q) (the

Hessian of U), which is denoted as Dp, is negative definite, p(q) is one-to-one by the

Gale–Nikaido theorem. Thus, as the inverted system of p(q), we can obtain the direct

demand system q(p) = (q1(p), q2(p), . . . , qn(p)).

Social optimal The social welfare is defined by

W = U(q)−
n∑

i=1

ci(qi, ai)−D

(
n∑

i=1

ei(qi, ai)

)
.

11See Chapter 6. The model is a partial equilibrium model based on quasi-linear utility.
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Assuming the interior solution (i.e., qoi > 0 and aoi > 0), the first-order conditions for the

welfare-maximizing problem are

∂U

∂qi
(qo) =

∂ci
∂qi

(qoi , a
o
i ) +D′(Eo)

∂ei
∂qi

(qoi , a
o
i ), (9)

−D′(Eo)
∂ei
∂ai

(qoi , a
o
i ) =

∂ci
∂ai

(qoi , a
o
i ), (10)

where Eo =
∑n

i=1 ei(q
o
i , a

o
i ). The second-order condition is satisfied.

Cournot competition First, we consider the Cournot competition. Under the emis-

sion intensity targets, (θ1, . . . , θn) ≥ 0, firm i’s profit maximization problem is

max
qi,ai

pi(q)qi − ci(qi, ai)− t[ei(qi, ai)− θiqi].

Assuming the interior solution (i.e., q∗i > 0 and a∗i > 0), the first-order conditions for

firm i are

∂pi(q
∗)

∂qi
q∗i + pi(q

∗) + tθi =
∂ci
∂qi

(q∗i , a
∗
i ) + t

∂ei
∂qi

(q∗i , a
∗
i ), (11)

−t
∂ei
∂ai

(q∗i , a
∗
i ) =

∂ci
∂ai

(q∗i , a
∗
i ). (12)

We assume that the second-order condition is satisfied. Note that pi(q
∗) = ∂U(q∗)/∂qi

by (8). Thus, by comparing (11)–(12) with (9)–(10), we obtain the optimality by setting

t = D′(Eo) > 0, θi = − q∗i
D′(Eo)

∂pi(q
∗)

∂qi
> 0. (13)

Bertrand competition Next, we consider the Bertrand competition. Under the emis-

sion intensity targets, (θ1, . . . , θn) ≥ 0, firm i’s profit maximization problem is

max
pi,ai

piqi(p)− ci(qi(p), ai)− t[ei(qi(p), ai)− θiqi(p)].

Assuming the interior solution (i.e., p∗i > 0 and a∗i > 0), the first-order conditions for

firm i are

qi(p
∗) + [p∗i + tθi]

∂qi(p
∗)

∂pi
=

[
∂ci
∂qi

(qi(p
∗), a∗i ) + t

∂ei
∂qi

(qi(p
∗), a∗i )

]
∂qi(p

∗)

∂pi
, (14)

−t
∂ei
∂ai

(qi(p
∗), a∗i ) =

∂ci
∂ai

(qi(p
∗), a∗i ). (15)
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We assume that the second-order condition is satisfied. By denoting q∗i = qi(p
∗), (14)

and (15) are rearranged as

q∗i
∂qi(p∗)/∂pi

+ p∗i + tθi =
∂ci
∂qi

(q∗i , a
∗
i ) + t

∂ei
∂qi

(q∗i , a
∗
i ), (16)

−t
∂ei
∂ai

(q∗i , a
∗
i ) =

∂ci
∂ai

(q∗i , a
∗
i ). (17)

Note that p∗i = pi(q(p
∗)) = ∂U(q(p∗))/∂qi by the definition of inverse demand and (8).

Thus, regarding (16)–(17) as the system of 2n equations with respect to 2n variables of

(q∗1, . . . , q
∗
n) = (q(p∗)) and (a∗1, . . . , a

∗
n), the system coincides (9)–(10) when we set

t = D′(Eo) > 0, θi = − qi(p
∗)

D′(Eo)

/
∂qi(p

∗)

∂pi
> 0. (18)

Note that by the inverse function theorem, ∂qi(p)/∂pi is the same as the i-i’th element

of Dp−1 (the inverse matrix of Jacobian Dp).

Consequently, we obtain an extended result of Proposition 1.

Proposition 2 Consider Cournot or Bertrand oligopoly in a differentiated product mar-

ket. There exists (θ1, . . . , θn) such that the policy attains the first-best optimality (i.e.,

q∗i = qoi and a∗i = aoi ) if and only if the tax rate is Pigovian (i.e., t = D′(Eo)).

Proof. Sufficiency is obvious since Eqs. (11)–(12) or (16)–(17) coincide (9)–(10) when

t and (θ1, . . . , θn) are as in (13) or (18). To prove necessity, we show the contraposition.

Suppose that t ̸= D′(Eo) and take (θ1, . . . , θn) arbitrarily. Then, by (12) or (17) and

(10),

∂ci(q
∗
i , a

∗
i )/∂ai

∂ei(q∗i , a
∗
i )/∂ai

= −t ̸= −D′(Eo) =
∂ci(q

o
i , a

o
i )/∂ai

∂ei(qoi , a
o
i )/∂ai

.

Therefore, (q∗i , a
∗
i ) never equates to (qoi , a

o
i ) since the first and last terms are not equal.

Q.E.D.

This result suggests that our main result (Proposition 1) does not depend on the as-

sumption of a homogeneous product market and/or Cournot competition.

5.2 Tradable permit market based on emission intensity targets

In this subsection, we replace the emission tax with the tradable emission permits.
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There are N industries, each of which replicates12 the Cournot competition of n firms,

which is presented in Section 2. We denote each variable in the industry j = 1, 2, . . . , N

by superscript j. The social welfare is modified by

W =

N∑
j=1

(∫ Qj

0
p(q)dq −

n∑
i=1

ci(q
j
i , a

j
i )

)
−D

 N∑
j=1

n∑
i=1

ei(q
j
i , a

j
i )

 .

Since the outcomes at the social optimal are the same across the industries by symmetry,

we drop superscript j from them. The first-order conditions for the welfare-maximizing

problem are (1) and (2), where Eo = N
∑n

i=1 ei(q
o
i , a

o
i ). The second-order condition is

satisfied.

Consider the market for tradable permits across industries. We assume that the

number of firms n×N is sufficiently large for the behavior of each firm to approximate

a price taker in the permit market. The government sets emission intensity targets,

(θ1, . . . , θn) ≥ 0, and if a firm does not meet (overachieves) its target, the firm must

purchase (can sell) permits. The profit maximization problem of firm i in industry j is

described as

max
qji ,a

j
i

p(Qj)qji − ci(q
j
i , a

j
i )− r[ei(q

j
i , a

j
i )− θiq

j
i ],

where r ≥ 0 is the price of the permits.

Dropping superscript j by symmetry, the first-order conditions for firm i are

p′(Q∗)q∗i + p(Q∗) + rθi =
∂ci
∂qi

(q∗i , a
∗
i ) + r

∂ei
∂qi

(q∗i , a
∗
i ), (19)

−r
∂ei
∂ai

(q∗i , a
∗
i ) =

∂ci
∂ai

(q∗i , a
∗
i ). (20)

Further, the market clear condition of the permit market is

N
n∑

i=1

[ei(q
∗
i , a

∗
i )− θiq

∗
i ] = EG, (21)

where EG is the number of permits that the government sells.13

12This assumption is for notational simplicity, and we can easily extend the analysis here to the case
with asymmetric industries.

13If EG is negative, the government commits to purchase −EG from the market to induce firms to
overachieve. If EG is positive, the government may allocate EG among firms instead of selling quota in
the permit market. The first best is achieved by any allocation as long as the total amount allocated to
firms is EG.
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Suppose that the government sets the level of θi as

θi = −p′(Q∗)q∗i
D′(Eo)

> 0, (22)

and adjusts EG as

EG = N

[
Eo −

n∑
i=1

θiq
∗
i

]
= N

[
Eo +

n∑
i=1

p′(Q∗)(q∗i )
2

D′(Eo)

]
. (23)

We show that this policy combination makes the equilibrium price of permits r∗ equal

to the social marginal cost of emission and achieves the first-best outcome.

Proposition 3 Consider N Cournot oligopolies in homogeneous product markets. Sup-

pose that the firms are price takers in the tradable permit market. Then, the tradable

permit market based on the emission intensity target presented by (22)–(23) attains the

first-best optimality (i.e., q∗i = qoi and a∗i = aoi ) under r∗ = D′(Eo).

Proof. Suppose that r = D′(Eo) > 0 under the targets (22). Then, the market con-

ditions (19)–(20) coincide with the optimal conditions (1)–(2). Hence, we have q∗i = qoi

and a∗i = aoi , and thus, e∗i = eoi . Then, it must be held that

N

n∑
i=1

[ei(q
∗
i , a

∗
i )− θiq

∗
i ] = N

[
Eo −

n∑
i=1

θiq
∗
i

]
= EG,

where the first equality is derived from e∗i = eoi , and the second one, from (23). Therefore,

if r = D′(Eo), the market clear condition (21) is satisfied, that is, r∗ = D′(Eo). Q.E.D.

The key assumption of this result is that firms are price takers in the permit market.

To restrict the market power in the permit market, it is important to create a common

permit market across industries and/or regions and provide incentives for a sufficiently

large number of firms to join this market. Another idea relates to government monitoring,

which restricts firms’ market power in the permit market.

5.3 Portfolio standards

As stated previously, our principle can apply to portfolio standard policies. Examples of

portfolio standard policies are RPS, which was introduced in many countries, the zero-

emission power plant regulation in the Japanese electricity market, and the ZEV Program

13



in California. To show the efficiency and limitation of portfolio standard policies, we

investigate a green portfolio standard in the electricity market.

Suppose the electricity that each firm i produces, namely qi, is decomposed into the

gray output xi ≥ 0 and the green output yi ≥ 0 as qi = xi + yi. The gray output is

the electricity produced by gray power sources such as fossil-fired power plants. Green

output is the electricity produced by green power sources such as renewable power plants.

We assume that the gray power sources yield negative externality, and the welfare loss

is denoted by D(X) with D′ > 0 and D′′ ≥ 0, where X =
∑n

i=1 xi.

The government regulates the ratio of green output as

yi/qi ≥ 1− θi ⇐⇒ xi/qi ≤ θi ∴ (1− θi)xi ≤ θiyi

. Firms that fall short of the green output targets pay the fee (or procure permits)

according to the level of shortage, and firms that overachieve the targets receive the

subsidy (or sell permits). Firm i’s profit is

p(Q)qi − γi(xi, yi) + βi(xi, yi)− t((1− θi)xi − θiyi),

where γi is the production cost function, which is convex and satisfies ∂γi/∂xi > 0 and

∂γi/∂yi > 0. βi is the private benefit function from the green output. We assume that

βi(xi, yi) is concave and satisfies ∂βi/∂xi ≤ 0 and ∂γi/∂yi ≥ 0. A firm may be able to sell

green electricity at a price higher than the market price (the green electricity premium).14

If the green electricity premium is α per green power output, then βi(xi, yi) = αyi.

If we regard ai = yi, ei(qi, ai) = qi − ai = xi, and ci(qi, ai) = γi(xi, yi) − βi(xi, yi),

the framework presented here becomes a special case of our basic model except for three

minor points. Then, the analyses in the previous sections can be applied to this portfolio

standard policy, and the first best is achieved by the policy. The three differences between

the model in this subsection and the basic model are discussed below.

First, regarding the cost function, we drop the assumption that ∂ci/∂ai > 0 when

ai is small, and assume that ∂ci/∂ai > 0 only for a sufficiently large ai. Indeed, even

14For example, Tokyo Electric Power Company sells the electricity produced from hydropower at a
premium.
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under this extension, our analyses in the previous sections are robust.15 The assumption

∂ci/∂ai > 0 is not natural for the portfolio standards model. Because ci(qi, ai) = γi(qi −

ai, ai)− βi(qi − ai, ai), we obtain ∂ci/∂qi = ∂γi/∂xi − ∂βi/∂xi > 0 and

∂ci
∂ai

=

(
∂γi
∂yi

− ∂γi
∂xi

)
−
(
∂βi
∂yi

− ∂βi
∂xi

)
.

Thus, ∂ci/∂qi is positive but ∂ci/∂ai can be negative if ∂βi/∂yi − ∂βi/∂xi > 0 is large.

Moreover, even if βi = 0, ∂ci/∂ai can be negative, especially for small ai. The first

parenthesis can be negative if γi is strictly convex, because for a given qi, a marginal

shift from xi to yi saves a cost if ∂γi/∂yi < ∂γi/∂xi. Therefore, we should allow that

∂ci(qi, ai)/∂ai < 0, especially when ai/qi or yi/xi is small.

Second, in this subsection’s model, we must assume that yi ≤ qi (i.e., ei = xi ≥ 0).

If limyi→qi ∂(γi − βi)/∂yi is sufficiently large, this constraint does not bind, and the

earlier analyses can be applied as well. However, this case excludes the possibility of a

100% renewable electricity player, and it might be too restrictive.16 If ∂(γi − βi)/∂yi is

small for any yi, it is possible that yi = qi (i.e., xi = 0) is the optimal abatement level.

Thus, we should consider the possible corner solution. The first-order conditions for the

welfare-maximizing problem under the constraint ai ≤ qi are
17

p(Qo)− ∂ci
∂qi

(qoi , a
o
i )−D′(Eo) + λo

i = 0, (24)

D′(Eo)− ∂ci
∂ai

(qoi , a
o
i )− λo

i = 0, (25)

λo
i ≥ 0, qoi − aoi ≥ 0, λo

i (q
o
i − aoi ) = 0, (26)

where we use ∂ei/∂qi = 1 and ∂ei/∂ai = −1 in this model. The first-order conditions

15This is because it is necessary to satisfy ∂ci/∂ai > 0 at the interior equilibrium by the first-order
condition with respect to ai. Thus, the range ∂ci/∂ai < 0 is irrelevant to the analyses.

16Electricity markets contain 100% renewable electricity players. The vehicle manufacturing industry
contains companies that only manufacture electrical vehicles, such as Tesla and many small Chinese
manufactures.

17From the concavity of welfare, these are necessary and sufficient conditions for the global maximum.
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for a profit-maximizing problem of firm i under the constraint ai ≤ qi are
18

p′(Q∗)q∗i + p(Q∗) + tθi −
∂ci
∂qi

(q∗i , a
∗
i )− t+ λ∗

i = 0, (27)

t− ∂ci
∂ai

(q∗i , a
∗
i )− λ∗

i = 0, (28)

λ∗
i ≥ 0, q∗i − a∗i ≥ 0, λ∗

i (q
∗
i − a∗i ) = 0. (29)

Note that λo and λ∗ are the Lagrange multipliers. Comparing (24)–(26) and (27)–(29),

we find that the first best is achieved if the government chooses

to = D′(Eo) > 0, θoi = −p′(Q∗)q∗i
D′(Eo)

> 0. (30)

The final difference relates to the range of θi. In the portfolio standard case, it is

realistic to assume that θi ∈ [0, 1], not ∈ [0,∞). From the expression θoi in (30), as long

as D′(Xo) ≥ −p′qoi for all i (i.e., the negative externality of non-green sources is large

or the output of each firm is small), this constraint is not binding, and the portfolio

standard policy yields the first-best outcome. However, if the negative externality of

non-green sources is small, or there exists a dominant firm with a large qoi in the market,

this constraint can bind, and thus, the efficient outcome is not achieved by the portfolio

standard policy. Therefore, the portfolio standard policy might not be optimal if the

negative externality is insignificant and the market is highly concentrated.

6 Concluding remarks

In this study, we showed that the first-best optimality is achieved by the combination of

two traditional and standard policy tools, emission tax (or tradable permit) and emission

intensity targets. In other words, emission pricing policies based on emission intensity

targets yield the first-best outcomes. The literature on environmental tax shows that

Pigovian tax internalizing the negative externality yields the first best under perfect

competition, whereas it does not under imperfect competition. We showed that the

optimality is achieved by the combination of uniform emission tax and non-uniform

18Since the (global) second-order condition in the unconstrained case implies the concavity of the profit,
these first-order conditions are necessary and sufficient conditions.
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emission intensity targets, leading to the first best. We also showed that the first-best

uniform tax rate is always equal to the Pigovian tax rate.

Emission taxes and tradable permits were intensively discussed in the context of

carbon pricing, and many countries have introduced one of the two to mitigate global

warming. Emission intensity regulations are also widely observed. Emission taxes raise

the marginal cost of production and increase the distortion of suboptimal production un-

der imperfect competition. Emission intensity regulation serves to stimulate production

and mitigates the problem of insufficient production. Thus, the policy combination of

two standard and widespread environmental policies is ideal.

In this study, we assumed that the number of firms is exogenous. If we consider the

free-entry market, the first best will not be achieved by the combination of emission tax

and emission intensity targets. However, if we introduce the appropriate level of entry

license tax, the first-best optimality will be achieved by the policy discussed in this study.

We also did not consider any kind of uncertainty in this study. However, in the context

of global warming, uncertainties with regard to the supply side, demand side, and social

costs of emissions are quite important. Our analysis will be extended in this direction in

future research.19

19Ellerman and Sue Wing (2003) established an important contribution in this context. They consid-
ered a macro-level emission cap and considered absolute and intensity-based emission caps, which were
indexed to the gross domestic product (GDP). They showed the equivalence of absolute and intensity-
based emission caps without the uncertainty in the GDP, and the equivalence result did not hold with
uncertainty. Their results suggest the importance of uncertainty. Their result differs from ours because
they examined macro-level caps and considered efficient carbon pricing policies to achieve this goal under
perfect competition. However, we discussed how an efficient outcome may be achieved under imperfect
competition.
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